BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 38300851)

  • 1. Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA Drug-Induced Cardiotoxicity Rank.
    Seal S; Spjuth O; Hosseini-Gerami L; García-Ortegón M; Singh S; Bender A; Carpenter AE
    J Chem Inf Model; 2024 Feb; 64(4):1172-1186. PubMed ID: 38300851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA DICTrank.
    Seal S; Spjuth O; Hosseini-Gerami L; García-Ortegón M; Singh S; Bender A; Carpenter AE
    bioRxiv; 2023 Oct; ():. PubMed ID: 37905146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DICTrank: The largest reference list of 1318 human drugs ranked by risk of drug-induced cardiotoxicity using FDA labeling.
    Qu Y; Li T; Liu Z; Li D; Tong W
    Drug Discov Today; 2023 Nov; 28(11):103770. PubMed ID: 37714406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mRNA expression of
    Kanno SI; Hara A
    Mol Med Rep; 2021 Feb; 23(2):. PubMed ID: 33300057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of drug-induced liver injury and cardiotoxicity using chemical structure and in vitro assay data.
    Ye L; Ngan DK; Xu T; Liu Z; Zhao J; Sakamuru S; Zhang L; Zhao T; Xia M; Simeonov A; Huang R
    Toxicol Appl Pharmacol; 2022 Nov; 454():116250. PubMed ID: 36150479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug-Induced Cardiotoxicity in Children During the Past 30 Years: A Bibliometric Study and Visualization Analysis.
    Wu M; Yang Y; Cao M; Liu T; Tian Y; Zhao Z; Zhu B
    Med Sci Monit; 2023 Feb; 29():e938673. PubMed ID: 36806177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components.
    Radchenko EV; Rulev YA; Safanyaev AY; Palyulin VA; Zefirov NS
    Dokl Biochem Biophys; 2017 Mar; 473(1):128-131. PubMed ID: 28510124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational determination of hERG-related cardiotoxicity of drug candidates.
    Lee HM; Yu MS; Kazmi SR; Oh SY; Rhee KH; Bae MA; Lee BH; Shin DS; Oh KS; Ceong H; Lee D; Na D
    BMC Bioinformatics; 2019 May; 20(Suppl 10):250. PubMed ID: 31138104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepHIT: a deep learning framework for prediction of hERG-induced cardiotoxicity.
    Ryu JY; Lee MY; Lee JH; Lee BH; Oh KS
    Bioinformatics; 2020 May; 36(10):3049-3055. PubMed ID: 32022860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future.
    Li MY; Peng LM; Chen XP
    Front Cardiovasc Med; 2022; 9():966261. PubMed ID: 36312261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a broader view of mechanisms of drug cardiotoxicity.
    Mamoshina P; Rodriguez B; Bueno-Orovio A
    Cell Rep Med; 2021 Mar; 2(3):100216. PubMed ID: 33763655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TSSF-hERG: A machine-learning-based hERG potassium channel-specific scoring function for chemical cardiotoxicity prediction.
    Meng J; Zhang L; Wang L; Li S; Xie D; Zhang Y; Liu H
    Toxicology; 2021 Dec; 464():153018. PubMed ID: 34757159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of CACNA1H attenuates doxorubicin-induced acute cardiotoxicity by affecting endoplasmic reticulum stress.
    Hu J; Wu Q; Wang Z; Hong J; Chen R; Li B; Hu Z; Hu X; Zhang M
    Biomed Pharmacother; 2019 Dec; 120():109475. PubMed ID: 31580970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-based prediction of hERG-mediated cardiotoxicity based on the integration of different machine learning techniques.
    Delre P; Lavado GJ; Lamanna G; Saviano M; Roncaglioni A; Benfenati E; Mangiatordi GF; Gadaleta D
    Front Pharmacol; 2022; 13():951083. PubMed ID: 36133824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating nonlinear analysis and machine learning for human induced pluripotent stem cell-based drug cardiotoxicity testing.
    Kowalczewski A; Sakolish C; Hoang P; Liu X; Jacquir S; Rusyn I; Ma Z
    J Tissue Eng Regen Med; 2022 Aug; 16(8):732-743. PubMed ID: 35621199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble of structure and ligand-based classification models for hERG liability profiling.
    Vittorio S; Lunghini F; Pedretti A; Vistoli G; Beccari AR
    Front Pharmacol; 2023; 14():1148670. PubMed ID: 37033661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A human ether-á-go-go-related (hERG) ion channel atomistic model generated by long supercomputer molecular dynamics simulations and its use in predicting drug cardiotoxicity.
    Anwar-Mohamed A; Barakat KH; Bhat R; Noskov SY; Tyrrell DL; Tuszynski JA; Houghton M
    Toxicol Lett; 2014 Nov; 230(3):382-92. PubMed ID: 25127758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water Extract of
    Jeong Y; Lee SH; Lee J; Kim MS; Lee YG; Hwang JT; Choi SY; Yoon HG; Lim TG; Lee SH; Choi HK
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958893
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Kim MS; Choi HK; Park SH; Lee JI; Lee J
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis reveals families of chemical motifs enriched for HERG inhibitors.
    Du F; Babcock JJ; Yu H; Zou B; Li M
    PLoS One; 2015; 10(2):e0118324. PubMed ID: 25700001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.