BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38301153)

  • 1. Facile Bond Exchanging Strategy for Engineering Wet Adhesion and Antioxidant/Antibacterial Thin Layer over a Dynamic Hydrogel via the Carbon Dots Derived from Tannic Acid/ε-Polylysine.
    Xu C; Huang R; Yu M; Zhang S; Wang Y; Chen X; Hu Z; Wang Y; Xing X
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7790-7805. PubMed ID: 38301153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile injectable carbon dot/oxidative polysaccharide hydrogel with potent self-healing and high antibacterial activity.
    Yang X; Li P; Tang W; Du S; Yu M; Lu H; Tan H; Xing X
    Carbohydr Polym; 2021 Jan; 251():117040. PubMed ID: 33142598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ formation of adhesive hydrogels based on PL with laterally grafted catechol groups and their bonding efficacy to wet organic substrates.
    Ye M; Jiang R; Zhao J; Zhang J; Yuan X; Yuan X
    J Mater Sci Mater Med; 2015 Dec; 26(12):273. PubMed ID: 26518013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-crosslinked hydrogels with strong wet adhesion, self-healing, antibacterial property, reactive oxygen species scavenging activity, and on-demand removability for seawater-immersed wound healing.
    Lv Y; Cai F; He Y; Li L; Huang Y; Yang J; Zheng Y; Shi X
    Acta Biomater; 2023 Mar; 159():95-110. PubMed ID: 36736644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Hydrogel Adhesive with Dual Hydrogen Bond Networks.
    Jiang Z; Li Y; Shen Y; Yang J; Zhang Z; You Y; Lv Z; Yao L
    Molecules; 2021 May; 26(9):. PubMed ID: 34064401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular design of an ultra-strong tissue adhesive hydrogel with tunable multifunctionality.
    Zheng Y; Baidya A; Annabi N
    Bioact Mater; 2023 Nov; 29():214-229. PubMed ID: 37520304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in situ catechol functionalized ε-polylysine/polyacrylamide hydrogel formed by hydrogen bonding recombination with high mechanical property for hemostasis.
    Man Z; Sidi L; Xubo Y; Jin Z; Xin H
    Int J Biol Macromol; 2021 Nov; 191():714-726. PubMed ID: 34571130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue Adhesive, Biocompatible, Antioxidant, and Antibacterial Hydrogels Based on Tannic Acid and Fungal-Derived Carboxymethyl Chitosan for Wound-Dressing Applications.
    Rao KM; Uthappa UT; Kim HJ; Han SS
    Gels; 2023 Apr; 9(5):. PubMed ID: 37232946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring.
    Kang B; Yan X; Zhao Z; Song S
    Langmuir; 2022 Jun; 38(22):7013-7023. PubMed ID: 35613322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors.
    Cui C; Shao C; Meng L; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39228-39237. PubMed ID: 31550132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties.
    Hao S; Shao C; Meng L; Cui C; Xu F; Yang J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-Structured Wet-Adhesive Hydrogel with Ultralow Swelling, Ultrahigh Burst Pressure Tolerance, and Anti-Postoperative Adhesion Properties for Tissue Adhesion.
    Ma P; Liang W; Huang R; Zheng B; Feng K; He W; Huang Z; Shen H; Wang H; Wu D
    Adv Mater; 2024 Mar; 36(11):e2305400. PubMed ID: 38010313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mussel-inspired double cross-linked hydrogels with desirable mechanical properties, strong tissue-adhesiveness, self-healing properties and antibacterial properties.
    Chen Y; Wang Q; Li D; Mensah A; Qiu Y; Ke H; Wei Q
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111690. PubMed ID: 33545852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial Hydrogen Bond-Reinforced Adhesion and Cohesion Enabling an Ultrastretchable and Wet Adhesive Hydrogel Strain Sensor.
    Dong XY; Pan M; Zeng H
    Langmuir; 2024 Mar; 40(10):5444-5454. PubMed ID: 38427794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of polyphenol-crosslinked chitosan-based hydrogels for cutaneous wound repair.
    Wei Q; Zhao Y; Wei Y; Wang Y; Jin Z; Ma G; Jiang Y; Zhang W; Hu Z
    Int J Biol Macromol; 2023 Feb; 228():99-110. PubMed ID: 36565830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers.
    Chen Y; Zhang Y; Mensaha A; Li D; Wang Q; Wei Q
    Carbohydr Polym; 2021 Mar; 255():117508. PubMed ID: 33436257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tough, adhesive, self-healable, and antibacterial plant-inspired hydrogel based on pyrogallol-borax dynamic cross-linking.
    Ma C; Pang H; Liu H; Yan Q; Li J; Zhang S
    J Mater Chem B; 2021 May; 9(20):4230-4240. PubMed ID: 33998631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan-based multifunctional flexible hemostatic bio-hydrogel.
    Song F; Kong Y; Shao C; Cheng Y; Lu J; Tao Y; Du J; Wang H
    Acta Biomater; 2021 Dec; 136():170-183. PubMed ID: 34610476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Highly Stretchable, Real-Time Self-Healable Hydrogel Adhesive Matrix for Tissue Patches and Flexible Electronics.
    Luo J; Yang J; Zheng X; Ke X; Chen Y; Tan H; Li J
    Adv Healthc Mater; 2020 Feb; 9(4):e1901423. PubMed ID: 31945276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transparent Janus Hydrogel Wet Adhesive for Underwater Self-Cleaning.
    Feng H; Zhang J; Yang W; Ma Y; Wang R; Ma S; Cai M; Yu B; Zhou F
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50505-50515. PubMed ID: 34657413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.