These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 3830129)

  • 21. Reverse splicing of the Tetrahymena IVS: evidence for multiple reaction sites in the 23S rRNA.
    Roman J; Woodson SA
    RNA; 1995 Jul; 1(5):478-90. PubMed ID: 7489509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An intervening sequence in the gene coding for 25S ribosomal RNA of Tetrahymena pigmentosa.
    Wild MA; Gall JG
    Cell; 1979 Mar; 16(3):565-73. PubMed ID: 455443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of class I introns in a mitochondrial plasmid associated with senescence of Podospora anserina reveals extraordinary resemblance to the Tetrahymena ribosomal intron.
    Michel F; Cummings DJ
    Curr Genet; 1985; 10(1):69-79. PubMed ID: 3940064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo.
    Roman J; Woodson SA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2134-9. PubMed ID: 9482851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution.
    Lenaers G; Nielsen H; Engberg J; Herzog M
    Biosystems; 1988; 21(3-4):215-22. PubMed ID: 3395681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The complete nucleotide sequence of the small-subunit ribosomal RNA coding region for the cycad Zamia pumila: phylogenetic implications.
    Nairn CJ; Ferl RJ
    J Mol Evol; 1988; 27(2):133-41. PubMed ID: 3137351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstitution of a group I intron self-splicing reaction with an activator RNA.
    van der Horst G; Christian A; Inoue T
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):184-8. PubMed ID: 1986364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The ribosomal RNA gene region in Acanthamoeba castellanii mitochondrial DNA. A case of evolutionary transfer of introns between mitochondria and plastids?
    Lonergan KM; Gray MW
    J Mol Biol; 1994 Jun; 239(4):476-99. PubMed ID: 8006963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional intron+ and intron- rDNA in the same macronucleus of the ciliate Tetrahymena pigmentosa.
    Nielsen H; Engberg J
    Biochim Biophys Acta; 1985 May; 825(1):30-8. PubMed ID: 2986696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron.
    Roman J; Rubin MN; Woodson SA
    RNA; 1999 Jan; 5(1):1-13. PubMed ID: 9917062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A group-I self-splicing intron in the nuclear small subunit rRNA-encoding gene of the green alga, Chlorella ellipsoidea C-87.
    Aimi T; Yamada T; Murooka Y
    Gene; 1994 Feb; 139(1):65-71. PubMed ID: 8112590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. P5abc of the Tetrahymena ribozyme consists of three functionally independent elements.
    Naito Y; Shiraishi H; Inoue T
    RNA; 1998 Jul; 4(7):837-46. PubMed ID: 9671056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleotide sequence of a ribosomal RNA gene intron from slime mold Physarum polycephalum.
    Nomiyama H; Sakaki Y; Takagi Y
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1376-80. PubMed ID: 6262791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of primary and secondary 26S rRNA structures in two Tetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments.
    Engberg J; Nielsen H; Lenaers G; Murayama O; Fujitani H; Higashinakagawa T
    J Mol Evol; 1990 Jun; 30(6):514-21. PubMed ID: 2115930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA.
    Woodson SA; Cech TR
    Biochemistry; 1991 Feb; 30(8):2042-50. PubMed ID: 1998665
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA structure, not sequence, determines the 5' splice-site specificity of a group I intron.
    Doudna JA; Cormack BP; Szostak JW
    Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7402-6. PubMed ID: 2678103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-splicing and enzymatic cleavage of RNA by a group I intervening sequence.
    Latham JA; Zaug AJ; Cech TR
    Methods Enzymol; 1990; 181():558-69. PubMed ID: 2199766
    [No Abstract]   [Full Text] [Related]  

  • 39. Nucleotide sequence of the Physarum polycephalum small subunit ribosomal RNA as inferred from the gene sequence: secondary structure and evolutionary implications.
    Johansen T; Johansen S; Haugli FB
    Curr Genet; 1988 Sep; 14(3):265-73. PubMed ID: 3197135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET; Cech TR
    Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.