These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38301292)

  • 1. Improving the electrochemical characteristics and performance of a neutral all-iron flow battery by using the iron reduction bacteria.
    Li S; Peng X; Zheng D; Fan S; Li D
    Bioelectrochemistry; 2024 Jun; 157():108660. PubMed ID: 38301292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using ferrous-oxidizing bacteria to enhance the performance of a pH neutral all-iron flow battery.
    Li S; Fan S; Peng X; Zheng D; Li D
    iScience; 2024 Jan; 27(1):108595. PubMed ID: 38174320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric and Symmetric Redox Flow Batteries for Energy-Efficient, High-Recovery Water Desalination.
    Mohandass G; Chen W; Krishnan S; Kim T
    Environ Sci Technol; 2022 Apr; 56(7):4477-4488. PubMed ID: 35297617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microemulsions: Breakthrough Electrolytes for Redox Flow Batteries.
    Barth BA; Imel A; Nelms KM; Goenaga GA; Zawodzinski T
    Front Chem; 2022; 10():831200. PubMed ID: 35308789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron cycling at corroding carbon steel surfaces.
    Lee JS; McBeth JM; Ray RI; Little BJ; Emerson D
    Biofouling; 2013; 29(10):1243-52. PubMed ID: 24093730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte.
    Mitchell NH; Elgrishi N
    J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Regulation of Solvation Shell and Oriented Deposition toward a Highly Reversible Fe Anode for All-Iron Flow Batteries.
    Song Y; Yan H; Hao H; Liu Z; Yan C; Tang A
    Small; 2022 Dec; 18(49):e2204356. PubMed ID: 36310140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial reduction of schwertmannite by co-cultured iron- and sulfate-reducing bacteria.
    Ke C; Guo C; Zhang S; Deng Y; Li X; Li Y; Lu G; Ling F; Dang Z
    Sci Total Environ; 2023 Feb; 861():160551. PubMed ID: 36460112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metagenomic analysis of Fe(II)-oxidizing bacteria for Fe(III) mineral formation and carbon assimilation under microoxic conditions in paddy soil.
    Chen Y; Li X; Liu T; Li F; Sun W; Young LY; Huang W
    Sci Total Environ; 2022 Dec; 851(Pt 1):158068. PubMed ID: 35987227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Characterization of Dense Carbon Films as Model Surfaces to Estimate Electron Transfer Kinetics on Redox Flow Battery Electrodes.
    Wan CT; Ismail A; Quinn AH; Chiang YM; Brushett FR
    Langmuir; 2023 Jan; ():. PubMed ID: 36607828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design.
    Zhong F; Yang M; Ding M; Jia C
    Front Chem; 2020; 8():451. PubMed ID: 32637392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An All-Soluble Fe/Mn-Based Alkaline Redox Flow Battery System.
    Shen X; Kellamis C; Tam V; Sinclair N; Wainright J; Savinell R
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18686-18692. PubMed ID: 38573309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using in situ voltammetry as a tool to identify and characterize habitats of iron-oxidizing bacteria: from fresh water wetlands to hydrothermal vent sites.
    MacDonald DJ; Findlay AJ; McAllister SM; Barnett JM; Hredzak-Showalter P; Krepski ST; Cone SG; Scott J; Bennett SK; Chan CS; Emerson D; Luther Iii GW
    Environ Sci Process Impacts; 2014 Sep; 16(9):2117-26. PubMed ID: 24924809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights on biotic and abiotic 2,4-dichlorophenoxyacetic acid degradation by anaerobic iron-cycling bacteria.
    Stevenson Z; Tong H; Swanner ED
    J Environ Qual; 2023; 52(6):1092-1101. PubMed ID: 37689985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria.
    Feng C; Yue X; Li F; Wei C
    Biosens Bioelectron; 2013 Jan; 39(1):51-6. PubMed ID: 22794934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taurine Electrografting onto Porous Electrodes Improves Redox Flow Battery Performance.
    Boz EB; Boillat P; Forner-Cuenca A
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):41883-41895. PubMed ID: 36069702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbially mediated Fe-N coupled cycling at different hydrological regimes in riparian wetland.
    Wu Y; Xu L; Wang Z; Cheng J; Lu J; You H; Zhang X
    Sci Total Environ; 2022 Dec; 851(Pt 1):158237. PubMed ID: 36007641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical distribution of Fe and Fe(III)-reducing bacteria in the sediments of Lake Donghu, China.
    Tian C; Wang C; Tian Y; Wu X; Xiao B
    Can J Microbiol; 2015 Aug; 61(8):575-83. PubMed ID: 26156094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Oxidation by a Fused Cytochrome-Porin Common to Diverse Iron-Oxidizing Bacteria.
    Keffer JL; McAllister SM; Garber AI; Hallahan BJ; Sutherland MC; Rozovsky S; Chan CS
    mBio; 2021 Aug; 12(4):e0107421. PubMed ID: 34311573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.