These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38301540)
1. Human intestinal enteroids and predictive models validate the operational limits of sanitizers used for viral disinfection of vegetable process wash water. Allende A; Férez-Rubio JA; Tudela JA; Aznar R; Gil MI; Sánchez G; Randazzo W Int J Food Microbiol; 2024 Mar; 413():110601. PubMed ID: 38301540 [TBL] [Abstract][Full Text] [Related]
2. Peroxyacetic acid and chlorine dioxide unlike chlorine induce viable but non-culturable (VBNC) stage of Listeria monocytogenes and Escherichia coli O157:H7 in wash water. Truchado P; Gil MI; Allende A Food Microbiol; 2021 Dec; 100():103866. PubMed ID: 34416966 [TBL] [Abstract][Full Text] [Related]
3. Disinfection efficiency of chlorine dioxide and peracetic acid against MNV-1 and HAV in simulated soil-rich wash water. Wang Z; Yeo D; Kwon H; Zhang Y; Yoon D; Jung S; Hossain MI; Jeong MI; Choi C Food Res Int; 2024 Jan; 175():113772. PubMed ID: 38129061 [TBL] [Abstract][Full Text] [Related]
4. The Basis of Peracetic Acid Inactivation Mechanisms for Rotavirus and Tulane Virus under Conditions Relevant for Vegetable Sanitation. Fuzawa M; Bai H; Shisler JL; Nguyen TH Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32709728 [TBL] [Abstract][Full Text] [Related]
5. Comparison of chlorine and peroxyacetic-based disinfectant to inactivate Feline calicivirus, Murine norovirus and Hepatitis A virus on lettuce. Fraisse A; Temmam S; Deboosere N; Guillier L; Delobel A; Maris P; Vialette M; Morin T; Perelle S Int J Food Microbiol; 2011 Nov; 151(1):98-104. PubMed ID: 21924791 [TBL] [Abstract][Full Text] [Related]
6. Inactivation of Human Norovirus Genogroups I and II and Surrogates by Free Chlorine in Postharvest Leafy Green Wash Water. Dunkin N; Weng S; Jacangelo JG; Schwab KJ Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28887415 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of Combined Disinfection Methods for Reducing Escherichia coli O157:H7 Population on Fresh-Cut Vegetables. Petri E; Rodríguez M; García S Int J Environ Res Public Health; 2015 Jul; 12(8):8678-90. PubMed ID: 26213954 [TBL] [Abstract][Full Text] [Related]
8. Efficacy of chlorine dioxide on Escherichia coli inactivation during pilot-scale fresh-cut lettuce processing. Banach JL; van Overbeek LS; Nierop Groot MN; van der Zouwen PS; van der Fels-Klerx HJ Int J Food Microbiol; 2018 Mar; 269():128-136. PubMed ID: 29425860 [TBL] [Abstract][Full Text] [Related]
9. Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetables wash water applied on peracetic acid combined with lactic acid. Van Haute S; López-Gálvez F; Gómez-López VM; Eriksson M; Devlieghere F; Allende A; Sampers I Int J Food Microbiol; 2015 Sep; 208():102-13. PubMed ID: 26065727 [TBL] [Abstract][Full Text] [Related]
10. Peracetic Acid Sanitation on Arugula Microgreens Contaminated with Surface-Attached and Internalized Tulane Virus and Rotavirus. Fuzawa M; Duan J; Shisler JL; Nguyen TH Food Environ Virol; 2021 Sep; 13(3):401-411. PubMed ID: 33871810 [TBL] [Abstract][Full Text] [Related]
11. Free Chlorine Disinfection Mechanisms of Rotaviruses and Human Norovirus Surrogate Tulane Virus Attached to Fresh Produce Surfaces. Fuzawa M; Araud E; Li J; Shisler JL; Nguyen TH Environ Sci Technol; 2019 Oct; 53(20):11999-12006. PubMed ID: 31517478 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Peracetic Acid and Chlorine Effectiveness during Fresh-Cut Vegetable Processing at Industrial Scale. Petri E; Virto R; Mottura M; Parra J J Food Prot; 2021 Sep; 84(9):1592-1602. PubMed ID: 34015109 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of Neutral Electrolyzed Water for Inactivation of Human Norovirus. Moorman E; Montazeri N; Jaykus LA Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600317 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of human norovirus using chemical sanitizers. Kingsley DH; Vincent EM; Meade GK; Watson CL; Fan X Int J Food Microbiol; 2014 Feb; 171():94-9. PubMed ID: 24334094 [TBL] [Abstract][Full Text] [Related]
15. Physicochemical stability profile of Tulane virus: a human norovirus surrogate. Arthur SE; Gibson KE J Appl Microbiol; 2015 Sep; 119(3):868-75. PubMed ID: 26104882 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of a sanitizing washing step with different chemical disinfectants for the strawberry processing industry. Ortiz-Solà J; Abadias M; Colás-Medà P; Sánchez G; Bobo G; Viñas I Int J Food Microbiol; 2020 Dec; 334():108810. PubMed ID: 32805511 [TBL] [Abstract][Full Text] [Related]
17. Inactivation Mechanism and Efficacy of Grape Seed Extract for Human Norovirus Surrogate. Oh C; Chowdhury R; Samineni L; Shisler JL; Kumar M; Nguyen TH Appl Environ Microbiol; 2022 May; 88(9):e0224721. PubMed ID: 35465682 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of oxidizing disinfectants at inactivating murine norovirus on ready-to-eat foods. Girard M; Mattison K; Fliss I; Jean J Int J Food Microbiol; 2016 Feb; 219():7-11. PubMed ID: 26686597 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of chlorine and peroxyacetic acid to control Listeria monocytogenes on apples in simulated dump tank water system. Su Y; Shen X; Chiu T; Green T; Zhu MJ Food Microbiol; 2022 Sep; 106():104033. PubMed ID: 35690452 [TBL] [Abstract][Full Text] [Related]
20. Strategies to enhance fresh produce decontamination using combined treatments of ultraviolet, washing and disinfectants. Huang R; de Vries D; Chen H Int J Food Microbiol; 2018 Oct; 283():37-44. PubMed ID: 29957346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]