BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38301801)

  • 1. Plasticity of cold and heat stress tolerance induced by hardening and acclimation in the melon thrips.
    Cao HQ; Chen JC; Tang MQ; Chen M; Hoffmann AA; Wei SJ
    J Insect Physiol; 2024 Mar; 153():104619. PubMed ID: 38301801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid cold hardening of Thrips palmi (Thysanoptera: Thripidae).
    Park Y; Kim K; Kim Y
    Environ Entomol; 2014 Aug; 43(4):1076-83. PubMed ID: 25182622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat hardening of a larval amphibian is dependent on acclimation period and temperature.
    Dallas J; Warne RW
    J Exp Zool A Ecol Integr Physiol; 2023 May; 339(4):339-345. PubMed ID: 36811331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal tolerance responses of the two-spotted stink bug, Bathycoelia distincta (Hemiptera: Pentatomidae), vary with life stage and the sex of adults.
    Muluvhahothe MM; Joubert E; Foord SH
    J Therm Biol; 2023 Jan; 111():103395. PubMed ID: 36585076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bees display limited acclimation capacity for heat tolerance.
    Gonzalez VH; Herbison N; Robles Perez G; Panganiban T; Haefner L; Tscheulin T; Petanidou T; Hranitz J
    Biol Open; 2024 Mar; 13(3):. PubMed ID: 38427330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid induction of the heat hardening response in an Arctic insect.
    Sørensen MH; Kristensen TN; Lauritzen JMS; Noer NK; Høye TT; Bahrndorff S
    Biol Lett; 2019 Oct; 15(10):20190613. PubMed ID: 31615371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance.
    Jagdale GB; Grewal PS
    Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855).
    Machekano H; Zidana C; Gotcha N; Nyamukondiwa C
    Sci Rep; 2021 Nov; 11(1):22192. PubMed ID: 34772933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity.
    van Heerwaarden B; Sgrò C; Kellermann VM
    Proc Biol Sci; 2024 Feb; 291(2016):20232700. PubMed ID: 38320612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance.
    Slotsbo S; Schou MF; Kristensen TN; Loeschcke V; Sørensen JG
    J Exp Biol; 2016 Sep; 219(Pt 17):2726-32. PubMed ID: 27353229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of thermal acclimation on the tolerance of the peach fruit fly (Bactrocera zonata: Tephritidae) to heat and cold stress.
    Ben-Yosef M; Altman Y; Nemni-Lavi E; Papadopoulos NT; Nestel D
    J Therm Biol; 2023 Oct; 117():103677. PubMed ID: 37643512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How plastic are upper thermal limits? A comparative study in tsetse (family: Glossinidae) and wider Diptera.
    Weaving H; Terblanche JS; English S
    J Therm Biol; 2023 Dec; 118():103745. PubMed ID: 37924664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog (Engystomops pustulosus).
    Vo P; Gridi-Papp M
    J Therm Biol; 2017 May; 66():49-55. PubMed ID: 28477909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance.
    Gilbert AL; Miles DB
    Am Nat; 2019 Sep; 194(3):344-355. PubMed ID: 31553209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?
    Esperk T; Kjaersgaard A; Walters RJ; Berger D; Blanckenhorn WU
    J Evol Biol; 2016 May; 29(5):900-15. PubMed ID: 26801318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thermal acclimation potential of maximum heart rate and cardiac heat tolerance in Arctic char (Salvelinus alpinus), a northern cold-water specialist.
    Gilbert MJH; Farrell AP
    J Therm Biol; 2021 Jan; 95():102816. PubMed ID: 33454044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal plasticity in the invasive south American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae).
    Tarusikirwa VL; Mutamiswa R; English S; Chidawanyika F; Nyamukondiwa C
    J Therm Biol; 2020 May; 90():102598. PubMed ID: 32479393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Physiological Plasticity in Response to Cold Acclimation for Nonnative Italian Wall Lizards (
    Haro D; Pauly GB; Liwanag HEM
    Physiol Biochem Zool; 2023; 96(5):356-368. PubMed ID: 37713717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane lipid metabolism, heat shock response and energy costs mediate the interaction between acclimatization and heat-hardening response in the razor clam Sinonovacula constricta.
    Zhang W; Dong Y
    J Exp Biol; 2021 Oct; 224(19):. PubMed ID: 34499178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.