BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38302012)

  • 1. Construction of strain responsive Ti-containing carboxymethyl cellulose hydrogel with transitional coordination precursor.
    Wang C; Zhang J; Fu Q; Niu C; Xu Y; Chen Y; Zhao Z; Lu L
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129865. PubMed ID: 38302012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle-inspired anisotropic carboxymethyl cellulose-based double-network conductive hydrogels for flexible strain sensors.
    Zhong L; Zhang Y; Liu F; Wang L; Feng Q; Chen C; Xu Z
    Int J Biol Macromol; 2023 Sep; 248():125973. PubMed ID: 37495000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties.
    Hao S; Shao C; Meng L; Cui C; Xu F; Yang J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Sensitive and Robust Polysaccharide-Based Composite Hydrogel Sensor Integrated with Underwater Repeatable Self-Adhesion and Rapid Self-Healing for Human Motion Detection.
    Ling Q; Liu W; Liu J; Zhao L; Ren Z; Gu H
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24741-24754. PubMed ID: 35580208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A temperature and pressure dual-responsive, stretchable, healable, adhesive, and biocompatible carboxymethyl cellulose-based conductive hydrogels for flexible wearable strain sensor.
    Dang X; Fu Y; Wang X
    Biosens Bioelectron; 2024 Feb; 246():115893. PubMed ID: 38048722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion.
    Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L
    Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding.
    Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L
    Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor.
    Huang F; Wei W; Fan Q; Li L; Zhao M; Zhou Z
    J Colloid Interface Sci; 2022 Jun; 615():215-226. PubMed ID: 35131502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of strong and tough carboxymethyl cellulose-based oriented hydrogels by phase separation.
    Zhong L; Dong Z; Liu Y; Chen C; Xu Z
    Int J Biol Macromol; 2023 Jan; 225():79-89. PubMed ID: 36460246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe
    Fu H; Wang B; Li J; Xu J; Li J; Zeng J; Gao W; Chen K
    Mater Horiz; 2022 May; 9(5):1412-1421. PubMed ID: 35322839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor.
    Chen D; Zhao X; Wei X; Zhang J; Wang D; Lu H; Jia P
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53247-53256. PubMed ID: 33185423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Conductive Double-Network Hydrogel Sensors for Multiscale Motion Detection and Temperature Monitoring.
    Zhao R; Zhao Z; Song S; Wang Y
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59854-59865. PubMed ID: 38095585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-stretchable, adhesive, fatigue resistance, and anti-freezing conductive hydrogel based on gelatin/guar gum and liquid metal for dual-sensory flexible sensor and all-in-one supercapacitors.
    Zhao R; Fang Y; Zhao Z; Song S
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132585. PubMed ID: 38810849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports.
    Lei T; Pan J; Wang N; Xia Z; Zhang Q; Fan J; Tao L; Shou W; Gao Y
    Mater Horiz; 2024 Mar; 11(5):1234-1250. PubMed ID: 38131412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels.
    Li R; Ren J; Zhang M; Li M; Li Y; Yang W
    Biomacromolecules; 2024 Feb; 25(2):614-625. PubMed ID: 38241010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose nanocrystals boosted hydrophobically associated self-healable conductive hydrogels for the application of strain sensors and electronic devices.
    Ullah R; Shah LA; Khan MT
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129376. PubMed ID: 38262825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mussel-inspired cellulose nanofiber/poly(vinyl alcohol) hydrogels with robustness, self-adhesion and antimicrobial activity for strain sensors.
    Zhang R; Yang A; Yang Y; Zhu Y; Song Y; Li Y; Li J
    Int J Biol Macromol; 2023 Aug; 245():125469. PubMed ID: 37343611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionically Conductive Hydrogel with Fast Self-Recovery and Low Residual Strain as Strain and Pressure Sensors.
    Sun X; Yao F; Wang C; Qin Z; Zhang H; Yu Q; Zhang H; Dong X; Wei Y; Li J
    Macromol Rapid Commun; 2020 Jul; 41(13):e2000185. PubMed ID: 32500629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-strengthening and conductive cellulose composite hydrogel for high sensitivity strain sensor and flexible triboelectric nanogenerator.
    Sun W; Liu X; Hua W; Wang S; Wang S; Yu J; Wang J; Yong Q; Chu F; Lu C
    Int J Biol Macromol; 2023 Sep; 248():125900. PubMed ID: 37481191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen-Based Organohydrogel Strain Sensor with Self-Healing and Adhesive Properties for Detecting Human Motion.
    Ling Q; Fan X; Ling M; Liu J; Zhao L; Gu H
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12350-12362. PubMed ID: 36826788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.