These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38302314)

  • 1. Quantifying the performance enhancement facilitated by fractional-order implementation of classical control strategies for nanopositioning.
    Wang T; San-Millan A; Aphale SS
    ISA Trans; 2024 Apr; 147():153-162. PubMed ID: 38302314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractional order implementation of Integral Resonant Control - A nanopositioning application.
    San-Millan A; Feliu-Batlle V; Aphale SS
    ISA Trans; 2018 Nov; 82():223-231. PubMed ID: 28987885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-degrees-of-freedom PI
    San-Millan A; Feliu-Batlle V; Aphale SS
    ISA Trans; 2019 Aug; 91():207-217. PubMed ID: 30745192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Damping and tracking control of nanopositioning stages with double delayed position feedback.
    Xu S; Liu P
    Rev Sci Instrum; 2021 Oct; 92(10):103706. PubMed ID: 34717378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High precision structured H∞ control of a piezoelectric nanopositioning platform.
    Feng H; Zhou H; Jiang C; Pang A
    PLoS One; 2023; 18(6):e0286471. PubMed ID: 37327234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional repetitive control of nanopositioning stages for tracking high-frequency periodic inputs with nonsynchronized sampling.
    Li L; Gu G; Zhu L
    Rev Sci Instrum; 2019 May; 90(5):055108. PubMed ID: 31153249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and tracking control of dielectric elastomer actuators based on fractional calculus.
    Wu J; Xu Z; Zhang Y; Su CY; Wang Y
    ISA Trans; 2023 Jul; 138():687-695. PubMed ID: 36792481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision Motion Control of a Piezoelectric Actuator via a Modified Preisach Hysteresis Model and Two-Degree-of-Freedom H-Infinity Robust Control.
    Baziyad AG; Ahmad I; Salamah YB
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of a fully analog feedback loop with a Carbon-Black-based fractional order controller.
    Avon G; Caponetto R; Murgano E; Xibilia MG
    ISA Trans; 2023 Apr; 135():105-114. PubMed ID: 36210188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IMC-PID-fractional-order-filter controllers design for integer order systems.
    Maâmar B; Rachid M
    ISA Trans; 2014 Sep; 53(5):1620-8. PubMed ID: 24957276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High precision robust control design of piezoelectric nanopositioning platform.
    Feng H; Pang A; Zhou H
    Sci Rep; 2022 Jun; 12(1):10357. PubMed ID: 35725755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Notch Filter for Piezo-Actuated Nanopositioning System via Position and Online Estimate Dual-Mode.
    Huang C; Li H
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional Order Pole Placement for a buck converter based on commensurable transfer function.
    Ayres FAC; Bessa I; Pereira VMB; da Silva Farias NJ; de Menezes AR; de Medeiros RLP; Chaves JE; Lenzi MK; da Costa CT
    ISA Trans; 2020 Dec; 107():370-384. PubMed ID: 32773116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical design of fractional-order proportional-integral controllers for time-delay processes.
    Vu TN; Lee M
    ISA Trans; 2013 Sep; 52(5):583-91. PubMed ID: 23856598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust fractional-order auto-tuning for highly-coupled MIMO systems.
    Juchem J; Muresan C; De Keyser R; Ionescu CM
    Heliyon; 2019 Jul; 5(7):e02154. PubMed ID: 31388585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel auto-tuning method for fractional order PI/PD controllers.
    De Keyser R; Muresan CI; Ionescu CM
    ISA Trans; 2016 May; 62():268-75. PubMed ID: 26903289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractional-Order Robust Control Design under parametric uncertain approach.
    Martins-Gomes MC; de C Ayres Junior FA; da Costa Junior CT; de Bessa IV; da S Farias NJ; de Medeiros RLP; Silva LES; de Lucena Júnior VF
    ISA Trans; 2024 Oct; 153():420-432. PubMed ID: 39079783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties.
    Aphale SS; Devasia S; Reza Moheimani SO
    Nanotechnology; 2008 Mar; 19(12):125503. PubMed ID: 21817730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced robust fractional order proportional-plus-integral controller based on neural network for velocity control of permanent magnet synchronous motor.
    Zhang B; Pi Y
    ISA Trans; 2013 Jul; 52(4):510-6. PubMed ID: 23477669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analytical synthesis of fractional order PI
    Chen P; Luo Y
    ISA Trans; 2022 Dec; 131():124-136. PubMed ID: 35599040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.