These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38302420)

  • 1. Random expert sampling for deep learning segmentation of acute ischemic stroke on non-contrast CT.
    Ostmeier S; Axelrod B; Liu Y; Yu Y; Jiang B; Yuen N; Pulli B; Verhaaren BFJ; Kaka H; Wintermark M; Michel P; Mahammedi A; Federau C; Lansberg MG; Albers GW; Moseley ME; Zaharchuk G; Heit JJ
    J Neurointerv Surg; 2024 Feb; ():. PubMed ID: 38302420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-inferiority of deep learning ischemic stroke segmentation on non-contrast CT within 16-hours compared to expert neuroradiologists.
    Ostmeier S; Axelrod B; Verhaaren BFJ; Christensen S; Mahammedi A; Liu Y; Pulli B; Li LJ; Zaharchuk G; Heit JJ
    Sci Rep; 2023 Sep; 13(1):16153. PubMed ID: 37752162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome.
    Wong KK; Cummock JS; Li G; Ghosh R; Xu P; Volpi JJ; Wong STC
    Stroke; 2022 Sep; 53(9):2896-2905. PubMed ID: 35545938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Diffusion Lesion Volume Measurements in Acute Ischemic Stroke Using Encoder-Decoder Convolutional Network.
    Kim YC; Lee JE; Yu I; Song HN; Baek IY; Seong JK; Jeong HG; Kim BJ; Nam HS; Chung JW; Bang OY; Kim GM; Seo WK
    Stroke; 2019 Jun; 50(6):1444-1451. PubMed ID: 31092169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised Deep Learning for Stroke Lesion Segmentation on Follow-up CT Based on Generative Adversarial Networks.
    van Voorst H; Konduri PR; van Poppel LM; van der Steen W; van der Sluijs PM; Slot EMH; Emmer BJ; van Zwam WH; Roos YBWEM; Majoie CBLM; Zaharchuk G; Caan MWA; Marquering HA; ;
    AJNR Am J Neuroradiol; 2022 Aug; 43(8):1107-1114. PubMed ID: 35902122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning identifies stroke features between species.
    Castaneda-Vega S; Katiyar P; Russo F; Patzwaldt K; Schnabel L; Mathes S; Hempel JM; Kohlhofer U; Gonzalez-Menendez I; Quintanilla-Martinez L; Ziemann U; la Fougere C; Ernemann U; Pichler BJ; Disselhorst JA; Poli S
    Theranostics; 2021; 11(6):3017-3034. PubMed ID: 33456586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating nnU-Net for early ischemic change segmentation on non-contrast computed tomography in patients with Acute Ischemic Stroke.
    El-Hariri H; Souto Maior Neto LA; Cimflova P; Bala F; Golan R; Sojoudi A; Duszynski C; Elebute I; Mousavi SH; Qiu W; Menon BK
    Comput Biol Med; 2022 Feb; 141():105033. PubMed ID: 34802712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI Diffusion-Weighted Imaging to Measure Infarct Volume: Assessment of Manual Segmentation Variability.
    Cimflova P; Kral J; Volny O; Horn M; Ojha P; Cabal M; Kasickova L; Havelka J; Jonszta T; Bar M; Qiu W
    J Neuroimaging; 2021 May; 31(3):541-550. PubMed ID: 33783929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Hypoperfusion Lesion and Target Mismatch in Stroke from Diffusion-weighted MRI Using Deep Learning.
    Yu Y; Christensen S; Ouyang J; Scalzo F; Liebeskind DS; Lansberg MG; Albers GW; Zaharchuk G
    Radiology; 2023 Apr; 307(1):e220882. PubMed ID: 36472536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiautomated Detection of Early Infarct Signs on Noncontrast CT Improves Interrater Agreement.
    Christensen S; Demeestere J; Verhaaren BFJ; Heit JJ; Von Stein EL; Madill ES; Kennedy Loube D; Dugue R; Rengarajan S; Mlynash M; Albers GW; Lemmens R; Lansberg MG
    Stroke; 2023 Dec; 54(12):3090-3096. PubMed ID: 37909206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Better Diffusion Segmentation in Acute Ischemic Stroke Through Automatic Tree Learning Anomaly Segmentation.
    Boldsen JK; Engedal TS; Pedraza S; Cho TH; Thomalla G; Nighoghossian N; Baron JC; Fiehler J; Østergaard L; Mouridsen K
    Front Neuroinform; 2018; 12():21. PubMed ID: 29910721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PItcHPERFeCT: Primary Intracranial Hemorrhage Probability Estimation using Random Forests on CT.
    Muschelli J; Sweeney EM; Ullman NL; Vespa P; Hanley DF; Crainiceanu CM
    Neuroimage Clin; 2017; 14():379-390. PubMed ID: 28275541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alberta stroke program early computed tomographic scoring performance in a series of patients undergoing computed tomography and MRI: reader agreement, modality agreement, and outcome prediction.
    McTaggart RA; Jovin TG; Lansberg MG; Mlynash M; Jayaraman MV; Choudhri OA; Inoue M; Marks MP; Albers GW;
    Stroke; 2015 Feb; 46(2):407-12. PubMed ID: 25538199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Automatic Classification of Ischemic Stroke Subtype Using Diffusion-Weighted Images.
    Ryu WS; Schellingerhout D; Lee H; Lee KJ; Kim CK; Kim BJ; Chung JW; Lim JS; Kim JT; Kim DH; Cha JK; Sunwoo L; Kim D; Suh SI; Bang OY; Bae HJ; Kim DE
    J Stroke; 2024 May; 26(2):300-311. PubMed ID: 38836277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT.
    Qiu W; Kuang H; Teleg E; Ospel JM; Sohn SI; Almekhlafi M; Goyal M; Hill MD; Demchuk AM; Menon BK
    Radiology; 2020 Mar; 294(3):638-644. PubMed ID: 31990267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Qualitative Posttreatment Diffusion-Weighted Imaging as a Predictor of 90-day Outcome in Stroke Intervention.
    Dmytriw AA; Alrashed A; Enriquez-Marulanda A; Daghighi S; Waggas G; Rezaie A; Heyn C; Yu A; Aviv RI; Da Costa L; Yang VX
    Can J Neurol Sci; 2020 Mar; 47(2):160-166. PubMed ID: 31779719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms.
    Woo I; Lee A; Jung SC; Lee H; Kim N; Cho SJ; Kim D; Lee J; Sunwoo L; Kang DW
    Korean J Radiol; 2019 Aug; 20(8):1275-1284. PubMed ID: 31339015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semantic segmentation guided detector for segmentation, classification, and lesion mapping of acute ischemic stroke in MRI images.
    Wei YC; Huang WY; Jian CY; Hsu CH; Hsu CC; Lin CP; Cheng CT; Chen YL; Wei HY; Chen KF
    Neuroimage Clin; 2022; 35():103044. PubMed ID: 35597030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Ensemble of Two Different Multimodal Approaches to Segment 3D Ischemic Stroke Segmentation Using Brain Tumor Representation Among Multiple Center Datasets.
    Jeong H; Lim H; Yoon C; Won J; Lee GY; de la Rosa E; Kirschke JS; Kim B; Kim N; Kim C
    J Imaging Inform Med; 2024 May; ():. PubMed ID: 38693333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.