These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38302520)

  • 41. A Modified Deep Learning Framework for Arrhythmia Disease Analysis in Medical Imaging Using Electrocardiogram Signal.
    Anbarasi A; Ravi T; Manjula VS; Brindha J; Saranya S; Ramkumar G; Rathi R
    Biomed Res Int; 2022; 2022():5203401. PubMed ID: 35832849
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automatic detection of arrhythmia from imbalanced ECG database using CNN model with SMOTE.
    Pandey SK; Janghel RR
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):1129-1139. PubMed ID: 31728941
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automated Detection of Myocardial Infarction and Heart Conduction Disorders Based on Feature Selection and a Deep Learning Model.
    Hammad M; Chelloug SA; Alkanhel R; Prakash AJ; Muthanna A; Elgendy IA; Pławiak P
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080960
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automated ECG classification using a non-local convolutional block attention module.
    Wang J; Qiao X; Liu C; Wang X; Liu Y; Yao L; Zhang H
    Comput Methods Programs Biomed; 2021 May; 203():106006. PubMed ID: 33735660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robust R-Peak Detection in Low-Quality Holter ECGs Using 1D Convolutional Neural Network.
    Zahid MU; Kiranyaz S; Ince T; Devecioglu OC; Chowdhury MEH; Khandakar A; Tahir A; Gabbouj M
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):119-128. PubMed ID: 34110986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Novel Deep-Learning-Based Framework for the Classification of Cardiac Arrhythmia.
    Jamil S; Rahman M
    J Imaging; 2022 Mar; 8(3):. PubMed ID: 35324625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Classification of Continuous ECG Segments - Performance Analysis of a Deep Learning Model.
    Barbosa LCN; Lopes D; Escrivaes I; Moreira AHJ; Carvalho V; Vilaca JL; Morais P
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DE-PNN: Differential Evolution-Based Feature Optimization with Probabilistic Neural Network for Imbalanced Arrhythmia Classification.
    Nasim A; Kim YS
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746232
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep Learning Strategy for Sliding ECG Analysis during Cardiopulmonary Resuscitation: Influence of the Hands-Off Time on Accuracy.
    Krasteva V; Didon JP; Ménétré S; Jekova I
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A CNN Model for Cardiac Arrhythmias Classification Based on Individual ECG Signals.
    Zhang Y; Liu S; He Z; Zhang Y; Wang C
    Cardiovasc Eng Technol; 2022 Aug; 13(4):548-557. PubMed ID: 34981316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Tiny Matched Filter-Based CNN for Inter-Patient ECG Classification and Arrhythmia Detection at the Edge.
    Farag MM
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772404
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using single lead electrocardiograms of variable length.
    Kamaleswaran R; Mahajan R; Akbilgic O
    Physiol Meas; 2018 Mar; 39(3):035006. PubMed ID: 29369044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visualization deep learning model for automatic arrhythmias classification.
    Jiang M; Qiu Y; Zhang W; Zhang J; Wang Z; Ke W; Wu Y; Wang Z
    Physiol Meas; 2022 Aug; 43(8):. PubMed ID: 35882225
    [No Abstract]   [Full Text] [Related]  

  • 54. 12-Lead ECG arrhythmia classification using cascaded convolutional neural network and expert feature.
    Yang X; Zhang X; Yang M; Zhang L
    J Electrocardiol; 2021; 67():56-62. PubMed ID: 34082153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-classification of arrhythmias using a HCRNet on imbalanced ECG datasets.
    Luo X; Yang L; Cai H; Tang R; Chen Y; Li W
    Comput Methods Programs Biomed; 2021 Sep; 208():106258. PubMed ID: 34218172
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arrhythmia Classification with ECG signals based on the Optimization-Enabled Deep Convolutional Neural Network.
    Atal DK; Singh M
    Comput Methods Programs Biomed; 2020 Nov; 196():105607. PubMed ID: 32593973
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CEFEs: A CNN Explainable Framework for ECG Signals.
    Maweu BM; Dakshit S; Shamsuddin R; Prabhakaran B
    Artif Intell Med; 2021 May; 115():102059. PubMed ID: 34001319
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A New ECG Denoising Framework Using Generative Adversarial Network.
    Singh P; Pradhan G
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):759-764. PubMed ID: 32142452
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The prediction of cardiac abnormality and enhancement in minority class accuracy from imbalanced ECG signals using modified deep neural network models.
    Rai HM; Chatterjee K; Dashkevych S
    Comput Biol Med; 2022 Nov; 150():106142. PubMed ID: 36182760
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Machine Algorithm for Heartbeat Monitoring and Arrhythmia Detection Based on ECG Systems.
    Taloba AI; Alanazi R; Shahin OR; Elhadad A; Abozeid A; Abd El-Aziz RM
    Comput Intell Neurosci; 2021; 2021():7677568. PubMed ID: 35003247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.