These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 38302581)

  • 1. Canalizing cell fate by transcriptional repression.
    Lim B; Domsch K; Mall M; Lohmann I
    Mol Syst Biol; 2024 Mar; 20(3):144-161. PubMed ID: 38302581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Cell Fate Reprogramming and Protein Engineering to Study Transcription Factor Functions.
    Adrian-Segarra JM; Weigel B; Mall M
    Methods Mol Biol; 2021; 2352():227-236. PubMed ID: 34324190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yin and yang of pioneer transcription factors: Dual roles in repression and activation.
    Katsuda T; Sussman JH; Zaret KS; Stanger BZ
    Bioessays; 2024 Oct; 46(10):e2400138. PubMed ID: 39058903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pioneer and PRDM transcription factors coordinate bivalent epigenetic states to safeguard cell fate.
    Matsui S; Granitto M; Buckley M; Ludwig K; Koigi S; Shiley J; Zacharias WJ; Mayhew CN; Lim HW; Iwafuchi M
    Mol Cell; 2024 Feb; 84(3):476-489.e10. PubMed ID: 38211589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective.
    Rajasekhar VK; Begemann M
    Stem Cells; 2007 Oct; 25(10):2498-510. PubMed ID: 17600113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pioneer factors as master regulators of the epigenome and cell fate.
    Balsalobre A; Drouin J
    Nat Rev Mol Cell Biol; 2022 Jul; 23(7):449-464. PubMed ID: 35264768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis.
    Ciglar L; Girardot C; Wilczyński B; Braun M; Furlong EE
    Development; 2014 Jul; 141(13):2633-43. PubMed ID: 24961800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell Fate Programming by Transcription Factors and Epigenetic Machinery in Stomatal Development.
    Liu A; Mair A; Matos JL; Vollbrecht M; Xu SL; Bergmann DC
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Epigenetic Paradox of Pluripotent ES Cells.
    Festuccia N; Gonzalez I; Navarro P
    J Mol Biol; 2017 May; 429(10):1476-1503. PubMed ID: 27988225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic chromatin accessibility deploys heterotypic cis/trans-acting factors driving stomatal cell-fate commitment.
    Kim ED; Dorrity MW; Fitzgerald BA; Seo H; Sepuru KM; Queitsch C; Mitsuda N; Han SK; Torii KU
    Nat Plants; 2022 Dec; 8(12):1453-1466. PubMed ID: 36522450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A direct fate exclusion mechanism by Sonic hedgehog-regulated transcriptional repressors.
    Nishi Y; Zhang X; Jeong J; Peterson KA; Vedenko A; Bulyk ML; Hide WA; McMahon AP
    Development; 2015 Oct; 142(19):3286-93. PubMed ID: 26293298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating transcription and splicing into cell fate: Transcription factors on the block.
    Boumpas P; Merabet S; Carnesecchi J
    Wiley Interdiscip Rev RNA; 2023 Mar; 14(2):e1752. PubMed ID: 35899407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate.
    Shokouhian M; Bagheri M; Poopak B; Chegeni R; Davari N; Saki N
    J Cell Physiol; 2020 Oct; 235(10):6404-6423. PubMed ID: 32052445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic changes of the epigenetic landscape during cellular differentiation.
    Dambacher S; de Almeida GP; Schotta G
    Epigenomics; 2013 Dec; 5(6):701-13. PubMed ID: 24283883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BRG1 establishes the neuroectodermal chromatin landscape to restrict dorsal cell fates.
    Hoffman JA; Muse GW; Langer LF; Patterson AI; Gandara I; Ward JM; Archer TK
    Sci Adv; 2024 Mar; 10(9):eadj5107. PubMed ID: 38427725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity.
    Endoh M; Endo TA; Endoh T; Isono K; Sharif J; Ohara O; Toyoda T; Ito T; Eskeland R; Bickmore WA; Vidal M; Bernstein BE; Koseki H
    PLoS Genet; 2012; 8(7):e1002774. PubMed ID: 22844243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional network governing extraembryonic endoderm cell fate choice.
    Pham PD; Lu H; Han H; Zhou JJ; Madan A; Wang W; Murre C; Cho KWY
    Dev Biol; 2023 Oct; 502():20-37. PubMed ID: 37423592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repressive interactions in gene regulatory networks: When you have no other choice.
    Delás MJ; Briscoe J
    Curr Top Dev Biol; 2020; 139():239-266. PubMed ID: 32450962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development.
    Pajoro A; Madrigal P; Muiño JM; Matus JT; Jin J; Mecchia MA; Debernardi JM; Palatnik JF; Balazadeh S; Arif M; Ó'Maoiléidigh DS; Wellmer F; Krajewski P; Riechmann JL; Angenent GC; Kaufmann K
    Genome Biol; 2014 Mar; 15(3):R41. PubMed ID: 24581456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of repressive epigenetic machinery in lineage decision of T cells.
    Naito T; Taniuchi I
    Immunology; 2013 Jun; 139(2):151-7. PubMed ID: 23278842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.