BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38302735)

  • 1. Caliper, contrast enhanced-ultrasound or laser speckle contrast imaging: Techniques to follow mice melanoma growth.
    Mellinger A; Hersant J; Bourreau C; Lecoq S; Deveze E; Clere N; Henni S
    J Biophotonics; 2024 Mar; 17(3):e202300439. PubMed ID: 38302735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of laser speckle contrast imaging with laser Doppler perfusion imaging for tissue perfusion measurement.
    Guven G; Dijkstra A; Kuijper TM; Trommel N; van Baar ME; Topeli A; Ince C; van der Vlies CH
    Microcirculation; 2023 Jan; 30(1):e12795. PubMed ID: 36524297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducibility of high-resolution laser speckle contrast imaging to assess cutaneous microcirculation for wound healing monitoring in mice.
    Couturier A; Bouvet R; Cracowski JL; Roustit M
    Microvasc Res; 2022 May; 141():104319. PubMed ID: 35065086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging.
    Zötterman J; Bergkvist M; Iredahl F; Tesselaar E; Farnebo S
    J Plast Reconstr Aesthet Surg; 2016 Jul; 69(7):936-43. PubMed ID: 27026039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of vulvar blood perfusion in women with provoked vestibulodynia using laser Doppler perfusion imaging and laser speckle imaging.
    Cyr MP; Pinard A; Dubois O; Morin M
    Microvasc Res; 2019 Jan; 121():1-6. PubMed ID: 30121222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.
    Humeau-Heurtier A; Mahé G; Abraham P
    Microvasc Res; 2015 Mar; 98():54-61. PubMed ID: 25576743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function.
    Tew GA; Klonizakis M; Crank H; Briers JD; Hodges GJ
    Microvasc Res; 2011 Nov; 82(3):326-32. PubMed ID: 21803051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The monitoring of microvascular liver blood flow changes during ischemia and reperfusion using laser speckle contrast imaging.
    Li CH; Wang HD; Hu JJ; Ge XL; Pan K; Zhang AQ; Dong JH
    Microvasc Res; 2014 Jul; 94():28-35. PubMed ID: 24799282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser speckle contrast imaging for assessment of liver microcirculation.
    Sturesson C; Milstein DM; Post IC; Maas AM; van Gulik TM
    Microvasc Res; 2013 May; 87():34-40. PubMed ID: 23403398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging.
    Fredriksson I; Larsson M
    J Biomed Opt; 2017 Oct; 22(10):1-7. PubMed ID: 29019179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood perfusion values of laser speckle contrast imaging and laser Doppler flowmetry: is a direct comparison possible?
    Binzoni T; Humeau-Heurtier A; Abraham P; Mahe G
    IEEE Trans Biomed Eng; 2013 May; 60(5):1259-65. PubMed ID: 23232361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser speckle contrast imaging, the future DBF imaging technique for TRP target engagement biomarker assays.
    Bamps D; Macours L; Buntinx L; de Hoon J
    Microvasc Res; 2020 May; 129():103965. PubMed ID: 31812705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning of speckle statistics for in vivo and noninvasive characterization of cutaneous wound regions using laser speckle contrast imaging.
    Basak K; Dey G; Mahadevappa M; Mandal M; Sheet D; Dutta PK
    Microvasc Res; 2016 Sep; 107():6-16. PubMed ID: 27131831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speed-resolved perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning.
    Hultman M; Larsson M; Strömberg T; Fredriksson I
    J Biomed Opt; 2023 Mar; 28(3):036007. PubMed ID: 36950019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time laser speckle contrast imaging measurement during normothermic machine perfusion in pretransplant kidney assessment.
    Fang Y; van Ooijen L; Ambagtsheer G; Nikolaev AV; Clahsen-van Groningen MC; Dankelman J; de Bruin RWF; Minnee RC
    Lasers Surg Med; 2023 Oct; 55(8):784-793. PubMed ID: 37555246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser speckle contrast imaging: theoretical and practical limitations.
    Briers D; Duncan DD; Hirst E; Kirkpatrick SJ; Larsson M; Steenbergen W; Stromberg T; Thompson OB
    J Biomed Opt; 2013 Jun; 18(6):066018. PubMed ID: 23807512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of infrared thermography and laser speckle contrast imaging for the dynamic assessment of digital microvascular function.
    Pauling JD; Shipley JA; Raper S; Watson ML; Ward SG; Harris ND; McHugh NJ
    Microvasc Res; 2012 Mar; 83(2):162-7. PubMed ID: 21763703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning in multiexposure laser speckle contrast imaging can replace conventional laser Doppler flowmetry.
    Fredriksson I; Hultman M; Strömberg T; Larsson M
    J Biomed Opt; 2019 Jan; 24(1):1-11. PubMed ID: 30675771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelet Analysis of the Temporal Dynamics of the Laser Speckle Contrast in Human Skin.
    Mizeva I; Dremin V; Potapova E; Zherebtsov E; Kozlov I; Dunaev A
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1882-1889. PubMed ID: 31675309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time video-rate perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning.
    Hultman M; Larsson M; Strömberg T; Fredriksson I
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33191685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.