BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 383040)

  • 1. Antibiotics produced by Streptomyces olivaceus 142. Antifungal properties of antibiotic WR-142 FPG.
    Wieczorek J; Mordarski M
    Arch Immunol Ther Exp (Warsz); 1979; 27(3):433-9. PubMed ID: 383040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal properties of 1,2-dihydro-3-methylpyrido-(3,2-e)-as-triazine dihydrochloride (I-476).
    Wieczorek J; Mordarski M; Rykowski A; Nantka-Namirski P
    Arch Immunol Ther Exp (Warsz); 1985; 33(2):339-44. PubMed ID: 3909989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibiotics produced by Streptomyces olivaceus 142. II. Isolation, purification and activity spectrum of antibiotic WR 142-FPG.
    Mordarski M; Wieczorek J; Szewczuk A
    Arch Immunol Ther Exp (Warsz); 1977; 25(2):273-83. PubMed ID: 326221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal properties of a novel 1,2,4-triazine derivative I 319.
    Wieczorek J; Mordarski M; Rykowski A; Nantka-Namirski P
    Arch Immunol Ther Exp (Warsz); 1980; 28(5):727-33. PubMed ID: 7212980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prophylactic use of liposomized tuftsin enhances the susceptibility of Candida albicans to fluconazole in leukopenic mice.
    Khan MA; Khan A; Owais M
    FEMS Immunol Med Microbiol; 2006 Feb; 46(1):63-9. PubMed ID: 16420598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human lactoferrin-derived peptide's antifungal activities against disseminated Candida albicans infection.
    Lupetti A; Brouwer CP; Bogaards SJ; Welling MM; de Heer E; Campa M; van Dissel JT; Friesen RH; Nibbering PH
    J Infect Dis; 2007 Nov; 196(9):1416-24. PubMed ID: 17922408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of amphotericin B incorporated into liposomes and in lipid suspensions in the treatment of murine candidiasis.
    Kretschmar M; Nichterlein T; Hannak D; Hof H
    Arzneimittelforschung; 1996 Jul; 46(7):711-5. PubMed ID: 8842344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a serum-based antifungal susceptibility assay to predict the in vivo efficacy of novel echinocandin compounds.
    Maki K; Matsumoto S; Watabe E; Iguchi Y; Tomishima M; Ohki H; Yamada A; Ikeda F; Tawara S; Mutoh S
    Microbiol Immunol; 2008 Aug; 52(8):383-91. PubMed ID: 18667037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Evaluation of the effect of a new polyfungin derivative in chronic infection of albino mice with P-32 labeled Candida albicans].
    Kurnatowska A; Brykalski D; Kowszyk-Gindifer Z; Kwaśniewska J; Rózga A
    Med Dosw Mikrobiol; 1989; 41(1):53-9. PubMed ID: 2668660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrepancy between in vitro and in vivo antifungal activity of albendazole.
    Hardin TC; Najvar LK; Rizzo J; Fothergill AW; Rinaldi MG; Graybill JR
    J Med Vet Mycol; 1997; 35(3):153-8. PubMed ID: 9229330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mycolase and amphotericin B on Candida albicans and Candida pseudotropicalis in vitro and in vivo.
    Chalkley LJ; Trinci AP; Pope AM
    Sabouraudia; 1985 Jun; 23(3):147-64. PubMed ID: 3895468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the effectiveness of the sodium salt of N-succinylperimycin and nystatin in experimental candidiasis of white mice.
    Rutecka-Bonin I
    Arch Immunol Ther Exp (Warsz); 1971; 19(5):547-53. PubMed ID: 4952937
    [No Abstract]   [Full Text] [Related]  

  • 13. Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis.
    Navarathna DH; Hornby JM; Hoerrmann N; Parkhurst AM; Duhamel GE; Nickerson KW
    J Antimicrob Chemother; 2005 Dec; 56(6):1156-9. PubMed ID: 16239285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization and antifungal activity of a novel formulated nanocomposite containing Indolicidin and Graphene oxide against disseminated candidiasis.
    Farzanegan A; Roudbary M; Falahati M; Khoobi M; Gholibegloo E; Farahyar S; Karimi P; Khanmohammadi M
    J Mycol Med; 2018 Dec; 28(4):628-636. PubMed ID: 30126717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FR209602 and related compounds, novel antifungal lipopeptides from coleophoma crateriformis no. 738. II. In vitro and in vivo antifungal activity.
    Kanasaki R; Abe F; Furukawa S; Yoshikawa K; Fujie A; Hino M; Hashimoto S; Hori Y
    J Antibiot (Tokyo); 2006 Mar; 59(3):145-8. PubMed ID: 16724454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibiotics produced by Streptomyces olivaceus 142. III. Influence of antibiotic Wr 142 FPG on development of transplantable tumors in mice.
    Mordarski M; Wieczorek J
    Arch Immunol Ther Exp (Warsz); 1977; 25(6):757-64. PubMed ID: 565628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of antibiotics WR 142 on permeability of cell membranes.
    Jaworska-Blach B
    Arch Immunol Ther Exp (Warsz); 1977; 25(3):409-22. PubMed ID: 407886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo anticandidal activity of Swietenia mahogani methanolic seed extract.
    Sahgal G; Ramanathan S; Sasidharan S; Mordi MN; Ismail S; Mansor SM
    Trop Biomed; 2011 Apr; 28(1):132-7. PubMed ID: 21602779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dosing regimen on accumulation, retention and prophylactic efficacy of liposomal amphotericin B.
    Smith PJ; Olson JA; Constable D; Schwartz J; Proffitt RT; Adler-Moore JP
    J Antimicrob Chemother; 2007 May; 59(5):941-51. PubMed ID: 17400589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibiotics produced by Streptomyces olivaceus 142. I. Characterization of the FPG mutant and conditions of production of antibiotic WR 142-FPG.
    Wieczorek J; Mordarski M
    Arch Immunol Ther Exp (Warsz); 1976; 24(6):811-20. PubMed ID: 13763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.