BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38304344)

  • 1. Using a generative adversarial network to generate synthetic MRI images for multi-class automatic segmentation of brain tumors.
    Raut P; Baldini G; Schöneck M; Caldeira L
    Front Radiol; 2023; 3():1336902. PubMed ID: 38304344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model.
    Conte GM; Weston AD; Vogelsang DC; Philbrick KA; Cai JC; Barbera M; Sanvito F; Lachance DH; Jenkins RB; Tobin WO; Eckel-Passow JE; Erickson BJ
    Radiology; 2021 May; 299(2):313-323. PubMed ID: 33687284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-modal brain tumor segmentation via conditional synthesis with Fourier domain adaptation.
    Khalil YA; Ayaz A; Lorenz C; Weese J; Pluim J; Breeuwer M
    Comput Med Imaging Graph; 2024 Mar; 112():102332. PubMed ID: 38245925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-sequence generative adversarial network: better generation for enhanced magnetic resonance imaging images.
    Li L; Yu J; Li Y; Wei J; Fan R; Wu D; Ye Y
    Front Comput Neurosci; 2024; 18():1365238. PubMed ID: 38841427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion MRI data analysis assisted by deep learning synthesized anatomical images (DeepAnat).
    Li Z; Fan Q; Bilgic B; Wang G; Wu W; Polimeni JR; Miller KL; Huang SY; Tian Q
    Med Image Anal; 2023 May; 86():102744. PubMed ID: 36867912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease.
    Diller GP; Vahle J; Radke R; Vidal MLB; Fischer AJ; Bauer UMM; Sarikouch S; Berger F; Beerbaum P; Baumgartner H; Orwat S;
    BMC Med Imaging; 2020 Oct; 20(1):113. PubMed ID: 33032536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generative Adversarial Network Based Automatic Segmentation of Corneal Subbasal Nerves on In Vivo Confocal Microscopy Images.
    Yildiz E; Arslan AT; Yildiz Tas A; Acer AF; Demir S; Sahin A; Erol Barkana D
    Transl Vis Sci Technol; 2021 May; 10(6):33. PubMed ID: 34038501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning automatic semantic segmentation of glioblastoma multiforme regions on multimodal magnetic resonance images.
    Beser-Robles M; Castellá-Malonda J; Martínez-Gironés PM; Galiana-Bordera A; Ferrer-Lozano J; Ribas-Despuig G; Teruel-Coll R; Cerdá-Alberich L; Martí-Bonmatí L
    Int J Comput Assist Radiol Surg; 2024 Jun; ():. PubMed ID: 38849632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain MR image simulation for deep learning based medical image analysis networks.
    Ayaz A; Al Khalil Y; Amirrajab S; Lorenz C; Weese J; Pluim J; Breeuwer M
    Comput Methods Programs Biomed; 2024 May; 248():108115. PubMed ID: 38503072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative multi-adversarial network for striking the right balance in abdominal image segmentation.
    Rezaei M; Näppi JJ; Lippert C; Meinel C; Yoshida H
    Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1847-1858. PubMed ID: 32897490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks.
    Arafati A; Morisawa D; Avendi MR; Amini MR; Assadi RA; Jafarkhani H; Kheradvar A
    J R Soc Interface; 2020 Aug; 17(169):20200267. PubMed ID: 32811299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved brain metastases segmentation using generative adversarial network and conditional random field optimization mask R-CNN.
    Wang Y; Wen Z; Su L; Deng H; Gong J; Xiang H; He Y; Zhang H; Zhou P; Pang H
    Med Phys; 2024 May; ():. PubMed ID: 38775791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SynthEye: Investigating the Impact of Synthetic Data on Artificial Intelligence-assisted Gene Diagnosis of Inherited Retinal Disease.
    Veturi YA; Woof W; Lazebnik T; Moghul I; Woodward-Court P; Wagner SK; Cabral de Guimarães TA; Daich Varela M; Liefers B; Patel PJ; Beck S; Webster AR; Mahroo O; Keane PA; Michaelides M; Balaskas K; Pontikos N
    Ophthalmol Sci; 2023 Jun; 3(2):100258. PubMed ID: 36685715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning for automatic segmentation of vestibular schwannoma: a retrospective study from multi-center routine MRI.
    Kujawa A; Dorent R; Connor S; Thomson S; Ivory M; Vahedi A; Guilhem E; Wijethilake N; Bradford R; Kitchen N; Bisdas S; Ourselin S; Vercauteren T; Shapey J
    Front Comput Neurosci; 2024; 18():1365727. PubMed ID: 38784680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the relationship between magnetic resonance image quality metrics and deep learning-based segmentation accuracy of brain tumors.
    Muthusivarajan R; Celaya A; Yung JP; Long JP; Viswanath SE; Marcus DS; Chung C; Fuentes D
    Med Phys; 2024 Apr; ():. PubMed ID: 38640464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images.
    Mahmood F; Borders D; Chen RJ; Mckay GN; Salimian KJ; Baras A; Durr NJ
    IEEE Trans Med Imaging; 2020 Nov; 39(11):3257-3267. PubMed ID: 31283474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Two-Stage Generative Model with CycleGAN and Joint Diffusion for MRI-based Brain Tumor Detection.
    Wang W; Cui ZX; Cheng G; Cao C; Xu X; Liu Z; Wang H; Qi Y; Liang D; Zhu Y
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3534-3544. PubMed ID: 38442049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative Adversarial Networks for Brain MRI Synthesis: Impact of Training Set Size on Clinical Application.
    Zoghby MM; Erickson BJ; Conte GM
    J Imaging Inform Med; 2024 Jun; 37(3):1228-1238. PubMed ID: 38366293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully-Automated Segmentation of Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks.
    Ye Y; Cai Z; Huang B; He Y; Zeng P; Zou G; Deng W; Chen H; Huang B
    Front Oncol; 2020; 10():166. PubMed ID: 32154168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. sTBI-GAN: An adversarial learning approach for data synthesis on traumatic brain segmentation.
    Zhao X; Zang D; Wang S; Shen Z; Xuan K; Wei Z; Wang Z; Zheng R; Wu X; Li Z; Wang Q; Qi Z; Zhang L
    Comput Med Imaging Graph; 2024 Mar; 112():102325. PubMed ID: 38228021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.