These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38304793)

  • 1. Influence of NiO into the CO
    González A; Martínez-Cruz MA; Alcántar-Vázquez B; Portillo-Vélez NS; Pfeiffer H; Lara-García HA
    Heliyon; 2024 Jan; 10(2):e24645. PubMed ID: 38304793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated CO
    Bhaskaran A; Singh SA; Reddy BM; Roy S
    Langmuir; 2024 Jul; ():. PubMed ID: 38978485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of NiO doped on alkaline sludge from waste photovoltaic industries for catalytic dry reforming of methane.
    Shamsuddin MR; Teo SH; Azmi TSMT; Lahuri AH; Taufiq-Yap YH
    Environ Sci Pollut Res Int; 2024 Apr; ():. PubMed ID: 38635095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Nature Support on Methane and CO
    Fakeeha AH; Kasim SO; Ibrahim AA; Abasaeed AE; Al-Fatesh AS
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31159285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane.
    Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A
    Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Temperature Plasma-Assisted Catalytic Dry Reforming of Methane over CeO
    Ahasan MR; Hossain MM; Barlow Z; Ding X; Wang R
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):44984-44995. PubMed ID: 37703171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoting dry reforming of methane
    Shamsuddin MR; Asikin-Mijan N; Marliza TS; Miyamoto M; Uemiya S; Yarmo MA; Taufiq-Yap YH
    RSC Adv; 2021 Feb; 11(12):6667-6681. PubMed ID: 35423191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkali Metal CO
    Memon MZ; Zhao X; Sikarwar VS; Vuppaladadiyam AK; Milne SJ; Brown AP; Li J; Zhao M
    Environ Sci Technol; 2017 Jan; 51(1):12-27. PubMed ID: 27997129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Challenges of Calcium Looping Integrated with Methane Bireforming for Enhanced Carbon Capture and Utilization.
    Law ZX; Tsai DH
    Langmuir; 2023 Oct; 39(41):14782-14790. PubMed ID: 37788018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging trends in hydrogen and synfuel generation: a state-of-the-art review.
    Alhassan M; Jalil AA; Owgi AHK; Hamid MYS; Bahari MB; Van Tran T; Nabgan W; Hatta AH; Khusnun NFB; Amusa AA; Nyakuma BB
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):42640-42671. PubMed ID: 38902444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO
    Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J
    Front Chem; 2022; 10():993691. PubMed ID: 36118307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen Production from Gadolinium-Promoted Yttrium-Zirconium-Supported Ni Catalysts through Dry Methane Reforming.
    Fakeeha AH; Al-Fatesh AS; Srivastava VK; Ibrahim AA; Abahussain AAM; Abu-Dahrieh JK; Alotibi MF; Kumar R
    ACS Omega; 2023 Jun; 8(24):22108-22120. PubMed ID: 37360458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study on CO
    Gutiérrez A; Tamayo-Ramos JA; Martel S; Barros R; Bol A; Gennari FC; Larochette PA; Atilhan M; Aparicio S
    Phys Chem Chem Phys; 2022 Jun; 24(22):13678-13689. PubMed ID: 35611946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Influence of High-Energy Faceted TiO
    Wasantwisut S; Xiao Y; Feng P; Gilliard-Abdul-Aziz KL
    Chem Asian J; 2022 Feb; 17(4):e202101253. PubMed ID: 34936730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the formation and carbon dioxide capture by Li
    Grasso ML; Blanco MV; Cova F; González JA; Arneodo Larochette P; Gennari FC
    Phys Chem Chem Phys; 2018 Nov; 20(41):26570-26579. PubMed ID: 30306971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methane Dry Reforming by Ni-Cu Nanoalloys Anchored on Periclase-Phase MgAlO
    Xiao Z; Hou F; Zhang J; Zheng Q; Xu J; Pan L; Wang L; Zou J; Zhang X; Li G
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48838-48854. PubMed ID: 34613699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-looping reforming of methane realizes in situ CO
    Tian S; Yan F; Zhang Z; Jiang J
    Sci Adv; 2019 Apr; 5(4):eaav5077. PubMed ID: 30993203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming.
    Aghayan M; Potemkin DI; Rubio-Marcos F; Uskov SI; Snytnikov PV; Hussainova I
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43553-43562. PubMed ID: 29155551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syngas production by bi-reforming methane on an Ni-K-promoted catalyst using hydrotalcites and filamentous carbon as a support material.
    Cunha AF; Morales-Torres S; Pastrana-Martínez LM; Martins AA; Mata TM; Caetano NS; Loureiro JM
    RSC Adv; 2020 Jun; 10(36):21158-21173. PubMed ID: 35518751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ni-Based SBA-15 Catalysts Modified with CeMnO
    Grabchenko MV; Dorofeeva NV; Svetlichnyi VA; Larichev YV; La Parola V; Liotta LF; Kulinich SA; Vodyankina OV
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.