These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38304793)

  • 21. Highly Active Ni-Ru Bimetallic Catalyst Integrated with MFI Zeolite-Loaded Cerium Zirconium Oxide for Dry Reforming of Methane.
    Miao C; Chen S; Shang K; Liang L; Ouyang J
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47616-47632. PubMed ID: 36223106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Regenerative Ni-Doped CaTiO
    Jo S; Gilliard-AbdulAziz KL
    Small; 2024 Apr; ():e2401156. PubMed ID: 38686695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Progress in the Integration of CO
    Ning H; Li Y; Zhang C
    Molecules; 2023 Jun; 28(11):. PubMed ID: 37298975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of carbon dioxide in the feed stream of tri-reforming of methane process compared to the partial oxidation of methane.
    Soares ANB; Roseno KTC; Giudici R; Schmal M
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):19111-19119. PubMed ID: 36223012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sorption-Enhanced Dry Reforming of Methane in a DBD Plasma Reactor for Single-Stage Carbon Capture and Utilization.
    Vertongen R; De Felice G; van den Bogaard H; Gallucci F; Bogaerts A; Li S
    ACS Sustain Chem Eng; 2024 Jul; 12(29):10841-10853. PubMed ID: 39055865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast Carbon Dioxide Sorption Kinetics Using Lithium Silicate Nanowires.
    Nambo A; He J; Nguyen TQ; Atla V; Druffel T; Sunkara M
    Nano Lett; 2017 Jun; 17(6):3327-3333. PubMed ID: 28534635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.
    Mondal K; Sasmal S; Badgandi S; Chowdhury DR; Nair V
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22267-22273. PubMed ID: 26939689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal plasma gasification of organic waste stream coupled with CO
    Sikarwar VS; Peela NR; Vuppaladadiyam AK; Ferreira NL; Mašláni A; Tomar R; Pohořelý M; Meers E; Jeremiáš M
    RSC Adv; 2022 Feb; 12(10):6122-6132. PubMed ID: 35424582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-temperature CO
    Messabih K; Bendjaballah-Lalaoui N; Boucheffa Y
    Environ Sci Pollut Res Int; 2024 May; 31(22):32003-32015. PubMed ID: 38642231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Syngas Production via CO
    Wang Y; Wang Y; Li L; Cui C; Liu X; Da Costa P; Hu C
    ACS Omega; 2021 Aug; 6(34):22383-22394. PubMed ID: 34497927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst.
    Broda M; Manovic V; Imtiaz Q; Kierzkowska AM; Anthony EJ; Müller CR
    Environ Sci Technol; 2013 Jun; 47(11):6007-14. PubMed ID: 23675760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane.
    Li L; Chen J; Zhang Y; Sun J; Zou G
    Environ Sci Pollut Res Int; 2022 May; 29(25):37685-37699. PubMed ID: 35066826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coke-Resistant Ni/CeZrO
    Sophiana IC; Iskandar F; Devianto H; Nishiyama N; Budhi YW
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of Photothermal Catalyst from Biomass Ash (Bagasse) for Hydrogen Production via Dry Reforming of Methane (DRM): An Experimental Study.
    Kanchanakul I; Srinophakun TR; Kuboon S; Kaneko H; Kraithong W; Miyauchi M; Yamaguchi A
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility of switchable dual function materials as a flexible technology for CO
    Merkouri LP; Ramirez Reina T; Duyar MS
    Nanoscale; 2022 Sep; 14(35):12620-12637. PubMed ID: 35975753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promoting Dry Reforming of Methane Catalysed by Atomically-Dispersed Ni over Ceria-Upgraded Boron Nitride.
    Li X; Phornphimon M; Zhang X; Deng J; Zhang D
    Chem Asian J; 2022 May; 17(9):e202101428. PubMed ID: 35246955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the presence of ruthenium on the activity and stability of Co-Mg-Al-based catalysts in CO
    Gennequin C; Hany S; Tidahy HL; Aouad S; Estephane J; Aboukaïs A; Abi-Aad E
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22744-22760. PubMed ID: 27562810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO
    Wu X; Xu L; Chen M; Lv C; Wen X; Cui Y; Wu CE; Yang B; Miao Z; Hu X
    Front Chem; 2020; 8():581923. PubMed ID: 33195071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol-gel methods used for CO2 reforming of methane.
    Aghamohammadi S; Haghighi M; Karimipour S
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4872-82. PubMed ID: 23901507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.