BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38305195)

  • 21. In-Synthesis Se-Stabilization Enables Defect and Doping Engineering of HgTe Colloidal Quantum Dots.
    Yu M; Yang J; Zhang X; Yuan M; Zhang J; Gao L; Tang J; Lan X
    Adv Mater; 2024 Jul; 36(27):e2311830. PubMed ID: 38501495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors.
    Sliz R; Lejay M; Fan JZ; Choi MJ; Kinge S; Hoogland S; Fabritius T; García de Arquer FP; Sargent EH
    ACS Nano; 2019 Oct; 13(10):11988-11995. PubMed ID: 31545597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Colloidal InSb nanocrystals.
    Liu W; Chang AY; Schaller RD; Talapin DV
    J Am Chem Soc; 2012 Dec; 134(50):20258-61. PubMed ID: 23198950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Large Photomultiplication by Charge-Self-Trapping for High-Response Quantum Dot Infrared Photodetectors.
    Xu K; Ke L; Dou H; Xu R; Zhou W; Wei Q; Sun X; Wang H; Wu H; Li L; Xue J; Chen B; Weng TC; Zheng L; Yu Y; Ning Z
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14783-14790. PubMed ID: 35290029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III-V Colloidal Quantum Dots.
    Choi MJ; Sagar LK; Sun B; Biondi M; Lee S; Najjariyan AM; Levina L; García de Arquer FP; Sargent EH
    Nano Lett; 2021 Jul; 21(14):6057-6063. PubMed ID: 34250796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colloidal PbS Quantum Dot Photodiode Imager with Suppressed Dark Current.
    Wang Y; Hu H; Yuan M; Xia H; Zhang X; Liu J; Yang J; Xu S; Shi Z; He J; Zhang J; Gao L; Tang J; Lan X
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58573-58582. PubMed ID: 38059485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Performance Colloidal Quantum Dot Photodiodes via Suppressing Interface Defects.
    Lu S; Liu P; Yang J; Liu S; Yang Y; Chen L; Liu J; Liu Y; Wang B; Lan X; Zhang J; Gao L; Tang J
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12061-12069. PubMed ID: 36848237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colloidal Quantum Dot Light Emitting Diodes at Telecom Wavelength with 18% Quantum Efficiency and Over 1 MHz Bandwidth.
    Pradhan S; Dalmases M; Taghipour N; Kundu B; Konstantatos G
    Adv Sci (Weinh); 2022 Jul; 9(20):e2200637. PubMed ID: 35508607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast Near-Infrared Photodetection Using III-V Colloidal Quantum Dots.
    Sun B; Najarian AM; Sagar LK; Biondi M; Choi MJ; Li X; Levina L; Baek SW; Zheng C; Lee S; Kirmani AR; Sabatini R; Abed J; Liu M; Vafaie M; Li P; Richter LJ; Voznyy O; Chekini M; Lu ZH; García de Arquer FP; Sargent EH
    Adv Mater; 2022 Aug; 34(33):e2203039. PubMed ID: 35767306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colloidal InAs Quantum Dot-Based Infrared Optoelectronics Enabled by Universal Dual-Ligand Passivation.
    Si MJ; Jee S; Yang M; Kim D; Ahn Y; Lee S; Kim C; Bae IH; Baek SW
    Adv Sci (Weinh); 2024 Apr; 11(13):e2306798. PubMed ID: 38240455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MoS
    Huo N; Gupta S; Konstantatos G
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28247438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercury Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors.
    Hao Q; Ma H; Xing X; Tang X; Wei Z; Zhao X; Chen M
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc Carboxylate Surface Passivation for Enhanced Optical Properties of In(Zn)P Colloidal Quantum Dots.
    Yoo D; Bak E; Ju HM; Shin YM; Choi MJ
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Colloidal quantum dot materials for next-generation near-infrared optoelectronics.
    Meng L; Xu Q; Zhang J; Wang X
    Chem Commun (Camb); 2024 Jan; 60(9):1072-1088. PubMed ID: 38174780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Short-Wave Infrared Light-Emitting Diodes Based on Heavy-Metal-Free Quantum Dots.
    Zhao X; Lim LJ; Ang SS; Tan ZK
    Adv Mater; 2022 Nov; 34(45):e2206409. PubMed ID: 36097727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Performance Visible to Mid-Infrared Photodetectors Based on HgTe Colloidal Quantum Dots under Room Temperature.
    Xia K; Gao XD; Fei GT; Xu SH; Liang YF; Qu XX
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38669621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extended Short-Wavelength Infrared Photoluminescence and Photocurrent of Nonstoichiometric Silver Telluride Colloidal Nanocrystals.
    Kim G; Choi D; Eom SY; Song H; Jeong KS
    Nano Lett; 2021 Oct; 21(19):8073-8079. PubMed ID: 34524828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Very long wave infrared quantum dot photodetector up to 18 μm.
    Xue X; Hao Q; Chen M
    Light Sci Appl; 2024 Apr; 13(1):89. PubMed ID: 38609412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging Design and Characterization Guidelines for Polymer-Based Infrared Photodetectors.
    Wu Z; Zhai Y; Kim H; Azoulay JD; Ng TN
    Acc Chem Res; 2018 Dec; 51(12):3144-3153. PubMed ID: 30520307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silicon Surface Passivation for Silicon-Colloidal Quantum Dot Heterojunction Photodetectors.
    Xu Q; Cheong IT; Meng L; Veinot JGC; Wang X
    ACS Nano; 2021 Nov; 15(11):18429-18436. PubMed ID: 34757719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.