These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38305726)

  • 1. Effect of atomic substitution and structure on thermal conductivity in monolayers H-MN and T-MN (M = B, Al, Ga).
    Zhang Y; Gan S; Li J; Tian Y; Chen X; Su G; Hu Y; Wang N
    Phys Chem Chem Phys; 2024 Feb; 26(7):6256-6264. PubMed ID: 38305726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study.
    Qin Z; Qin G; Zuo X; Xiong Z; Hu M
    Nanoscale; 2017 Mar; 9(12):4295-4309. PubMed ID: 28295111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lattice Thermal Transport in Monolayer Group 13 Monochalcogenides MX (M = Ga, In; X = S, Se, Te): Interplay of Atomic Mass, Harmonicity, and Lone-Pair-Induced Anharmonicity.
    Nissimagoudar AS; Rashid Z; Ma J; Li W
    Inorg Chem; 2020 Oct; 59(20):14899-14909. PubMed ID: 32993283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of four-phonon interaction on phonon thermal conductivity of hexagonal VTe
    Jin D; Zhang P; Tian Z; Zhang Z; Yuan Y; Liu Y; Lu Z; Xiong R
    Phys Chem Chem Phys; 2023 Nov; 25(42):28669-28676. PubMed ID: 37849319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials.
    Jiang J; Lu S; Ouyang Y; Chen J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure.
    Yang Z; Yuan K; Meng J; Hu M
    Nanoscale; 2020 Oct; 12(37):19178-19190. PubMed ID: 32926048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. External electric field driving the ultra-low thermal conductivity of silicene.
    Qin G; Qin Z; Yue SY; Yan QB; Hu M
    Nanoscale; 2017 Jun; 9(21):7227-7234. PubMed ID: 28513696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraordinary lattice thermal conductivity of gold sulfide monolayers.
    Taheri A; Pisana S; Singh CV
    Nanoscale Adv; 2022 Jun; 4(13):2873-2883. PubMed ID: 36132007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High and Anomalous Thermal Conductivity in Monolayer MSi
    Yin Y; Yi M; Guo W
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45907-45915. PubMed ID: 34523910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study.
    Guo SD; Dong J; Liu JT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22038-22046. PubMed ID: 30112534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice Thermal Transport in the Homogeneous Cage-Like Compounds Cu
    Yang D; Yang J; Quan X; Zhang B; Wang G; Lu X; Zhou X
    Chemphyschem; 2021 Dec; 22(24):2579-2584. PubMed ID: 34622539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-Driven High Thermal Conductivity in Hexagonal Boron Phosphide Monolayer.
    Chen X; Wang G; Li B; Wang N
    Langmuir; 2024 Feb; 40(6):3095-3104. PubMed ID: 38299976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the thermal conductivity of MOF-5 from first principles.
    Zhang S; Liu J; Liu L
    RSC Adv; 2021 Nov; 11(58):36928-36933. PubMed ID: 35494339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals.
    Kocabaş T; Çakır D; Gülseren O; Ay F; Kosku Perkgöz N; Sevik C
    Nanoscale; 2018 Apr; 10(16):7803-7812. PubMed ID: 29664085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically Low Thermal Conductivity in a Novel Cu-S Modified ZrS
    Li Z; Zhou Z; Zhang J; Zhu C; Qiu P; Deng T; Xu F; Chen L; Shi X
    Small; 2023 Dec; 19(52):e2304718. PubMed ID: 37621034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Born effective charge removed anomalous temperature dependence of lattice thermal conductivity in monolayer GeC.
    Guo SD; Guo XS; Dong J
    J Phys Condens Matter; 2019 Mar; 31(12):125701. PubMed ID: 30630139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particlelike Phonon Propagation Dominates Ultralow Lattice Thermal Conductivity in Crystalline Tl_{3}VSe_{4}.
    Xia Y; Pal K; He J; Ozoliņš V; Wolverton C
    Phys Rev Lett; 2020 Feb; 124(6):065901. PubMed ID: 32109101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass-like thermal conductivity and phonon transport mechanism in disordered crystals.
    Ren G; Che J; Zhang H; Yu Y; Hao W; Shi Y; Yang F; Zhao X
    Mater Horiz; 2024 Mar; 11(6):1567-1578. PubMed ID: 38265092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential 2D thermoelectric material ATeI (A = Sb and Bi) monolayers from a first-principles study.
    Guo SD; Zhang AX; Li HC
    Nanotechnology; 2017 Nov; 28(44):445702. PubMed ID: 28825405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.