These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38305726)

  • 21. Particlelike Phonon Propagation Dominates Ultralow Lattice Thermal Conductivity in Crystalline Tl_{3}VSe_{4}.
    Xia Y; Pal K; He J; Ozoliņš V; Wolverton C
    Phys Rev Lett; 2020 Feb; 124(6):065901. PubMed ID: 32109101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glass-like thermal conductivity and phonon transport mechanism in disordered crystals.
    Ren G; Che J; Zhang H; Yu Y; Hao W; Shi Y; Yang F; Zhao X
    Mater Horiz; 2024 Mar; 11(6):1567-1578. PubMed ID: 38265092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential 2D thermoelectric material ATeI (A = Sb and Bi) monolayers from a first-principles study.
    Guo SD; Zhang AX; Li HC
    Nanotechnology; 2017 Nov; 28(44):445702. PubMed ID: 28825405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials.
    Peng B; Zhang D; Zhang H; Shao H; Ni G; Zhu Y; Zhu H
    Nanoscale; 2017 Jun; 9(22):7397-7407. PubMed ID: 28318004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complex role of strain engineering of lattice thermal conductivity in hydrogenated graphene-like borophene induced by high-order phonon anharmonicity.
    He J; Yu C; Lu S; Shan S; Zhang Z; Chen J
    Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37804826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of anharmonic strength and number of allowed three-phonon processes in lattice thermal conductivity of SnTe based compounds.
    Keshri SP; Medhi A
    J Phys Condens Matter; 2021 Mar; 33(11):115701. PubMed ID: 33326936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tensile strain and finite size modulation of low lattice thermal conductivity in monolayer TMDCs (HfSe
    Chen G; Bao W; Wang Z; Tang D
    Phys Chem Chem Phys; 2023 Mar; 25(13):9225-9237. PubMed ID: 36919457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential thermoelectric materials: first-principles prediction of low lattice thermal conductivity of two-dimensional (2D) orthogonal ScX
    Bi S; Sun Z; Yuan K; Chang Z; Zhang X; Gao Y; Tang D
    Phys Chem Chem Phys; 2021 Oct; 23(41):23718-23729. PubMed ID: 34642727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phonon transport in Janus monolayer MoSSe: a first-principles study.
    Guo SD
    Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of novel ground-state structures and analysis of phonon transport in two-dimensional Ge
    Ali A; Shin YH
    Phys Chem Chem Phys; 2023 Dec; 26(1):602-611. PubMed ID: 38086636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultralow Lattice Thermal Conductivity of the Random Multilayer Structure with Lattice Imperfections.
    Chakraborty P; Cao L; Wang Y
    Sci Rep; 2017 Aug; 7(1):8134. PubMed ID: 28811540
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microscopic Mechanisms of Glasslike Lattice Thermal Transport in Cubic Cu_{12}Sb_{4}S_{13} Tetrahedrites.
    Xia Y; Ozoliņš V; Wolverton C
    Phys Rev Lett; 2020 Aug; 125(8):085901. PubMed ID: 32909770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phonon transport and thermoelectric properties of semiconducting Bi
    Rashid Z; Nissimagoudar AS; Li W
    Phys Chem Chem Phys; 2019 Mar; 21(10):5679-5688. PubMed ID: 30799478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Violation of the
    Zhu Y; Xia Y; Wang Y; Sheng Y; Yang J; Fu C; Li A; Zhu T; Luo J; Wolverton C; Snyder GJ; Liu J; Zhang W
    Research (Wash D C); 2020; 2020():4589786. PubMed ID: 33623905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The intrinsically low lattice thermal conductivity of monolayer T-Au
    Ji Y; Chen X; Sun Z; Shen C; Wang N
    Phys Chem Chem Phys; 2023 Nov; 25(46):31781-31790. PubMed ID: 37965932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.
    Kang JS; Wu H; Hu Y
    Nano Lett; 2017 Dec; 17(12):7507-7514. PubMed ID: 29115845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Different Phonon Scattering Factors on the Heat Transport Properties of Graphene Ribbons.
    Chen J; Meng L
    ACS Omega; 2022 Jun; 7(23):20186-20194. PubMed ID: 35722022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disparate Strain Dependent Thermal Conductivity of Two-dimensional Penta-Structures.
    Liu H; Qin G; Lin Y; Hu M
    Nano Lett; 2016 Jun; 16(6):3831-42. PubMed ID: 27228130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of Temperature-Dependent Phonon Anharmonicity and Thermal Transport in SnS Single Crystals.
    Li J; Yan T; Gong X; Zou H; Zhang B; Wu H; Wang G; Zhou X
    J Phys Chem Lett; 2023 Aug; 14(33):7346-7353. PubMed ID: 37561607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Why thermal conductivity of CaO is lower than that of CaS: a study from the perspective of phonon splitting of optical mode.
    Yang Z; Yuan K; Meng J; Zhang X; Tang D; Hu M
    Nanotechnology; 2021 Jan; 32(2):025709. PubMed ID: 33055376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.