These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38305726)

  • 41. Anisotropic Phonon Scattering and Thermal Transport Property Induced by the Liquid-like Behavior of AgCrSe
    Wang C; Chen Y
    Nano Lett; 2023 Apr; 23(8):3524-3531. PubMed ID: 37067069
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phonon transport in graphene based materials.
    Liu C; Lu P; Chen W; Zhao Y; Chen Y
    Phys Chem Chem Phys; 2021 Dec; 23(46):26030-26060. PubMed ID: 34515261
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temperature and Thickness Dependence of the Thermal Conductivity in 2D Ferromagnet Fe
    Claro MS; Corral-Sertal J; Fumega AO; Blanco-Canosa S; Suárez-Rodríguez M; Hueso LE; Pardo V; Rivadulla F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49538-49544. PubMed ID: 37846079
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phase Stability, Strong Four-Phonon Scattering, and Low Lattice Thermal Conductivity in Superatom-Based Superionic Conductor Na
    Du PH; Zhang C; Sun J; Li T; Sun Q
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47882-47891. PubMed ID: 36239388
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.
    Hong Y; Zhang J; Huang X; Zeng XC
    Nanoscale; 2015 Nov; 7(44):18716-24. PubMed ID: 26502794
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing phonon thermal transport in 2H-CrX
    Tang S; Wan D; Bai S; Fu S; Wang X; Li X; Zhang J
    Phys Chem Chem Phys; 2023 Aug; 25(33):22401-22414. PubMed ID: 37581216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of finite-temperature and anharmonic lattice dynamics on the thermal conductivity of ZrS
    Pandit A; Hamad B
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel 2D material with intrinsically low thermal conductivity of Ga
    Zhai W; Li L; Zhao M; Hu Q; Li J; Yang G; Yan Y; Zhang C; Liu PF
    Phys Chem Chem Phys; 2022 Feb; 24(7):4613-4619. PubMed ID: 35132981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. First-principles study of the layered thermoelectric material TiNBr.
    Zhang S; Xu B; Lin Y; Nan C; Liu W
    RSC Adv; 2019 Apr; 9(23):12886-12894. PubMed ID: 35520787
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.
    Guo SD; Liu JT
    Phys Chem Chem Phys; 2017 Dec; 19(47):31982-31988. PubMed ID: 29177337
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering Near Individual Grain Boundaries.
    Sood A; Cheaito R; Bai T; Kwon H; Wang Y; Li C; Yates L; Bougher T; Graham S; Asheghi M; Goorsky M; Goodson KE
    Nano Lett; 2018 Jun; 18(6):3466-3472. PubMed ID: 29631399
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe
    Shafique A; Shin YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):32072-32078. PubMed ID: 29181465
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nonmonotonic Diameter Dependence of Thermal Conductivity of Extremely Thin Si Nanowires: Competition between Hydrodynamic Phonon Flow and Boundary Scattering.
    Zhou Y; Zhang X; Hu M
    Nano Lett; 2017 Feb; 17(2):1269-1276. PubMed ID: 28128960
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Significant enhancement of lattice thermal conductivity of monolayer AlN under bi-axial strain: a first principles study.
    Banerjee A; Das BK; Chattopadhyay KK
    Phys Chem Chem Phys; 2022 Jul; 24(26):16065-16074. PubMed ID: 35735192
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phonon transport in Janus monolayer siblings: a comparison of 1T and 2H-ISbTe.
    Chu VH; Le TH; Pham TT; Nguyen DL
    RSC Adv; 2023 Jan; 13(7):4202-4210. PubMed ID: 36760311
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lattice Instability and Ultralow Lattice Thermal Conductivity of Layered PbIF.
    Yedukondalu N; Shafique A; Rakesh Roshan SC; Barhoumi M; Muthaiah R; Ehm L; Parise JB; Schwingenschlögl U
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40738-40748. PubMed ID: 36053500
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anomalously Suppressed Thermal Conduction by Electron-Phonon Coupling in Charge-Density-Wave Tantalum Disulfide.
    Liu H; Yang C; Wei B; Jin L; Alatas A; Said A; Tongay S; Yang F; Javey A; Hong J; Wu J
    Adv Sci (Weinh); 2020 Jun; 7(11):1902071. PubMed ID: 32537392
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Significantly suppressed thermal transport by doping In and Al atoms in gallium nitride.
    Qi C; Yu L; Zhu X; Li S; Du K; Qin Z; Qin G; Xiong Z
    Phys Chem Chem Phys; 2022 Sep; 24(35):21085-21093. PubMed ID: 36017798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.