BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38306082)

  • 1. Evaluation of driver drowsiness based on respiratory metrics.
    Khanehshenas F; Mazloumi A; Nahvi A; Nickabadi A; Aghamalizadeh A; Keihani A
    Work; 2024 Jan; ():. PubMed ID: 38306082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid approach for driver drowsiness detection utilizing practical data to improve performance system and applicability.
    Khanehshenas F; Mazloumi A; Nahvi A; Nickabadi A; Sadeghniiat K; Rahimiforoushani A; Aghamalizadeh A
    Work; 2024; 77(4):1165-1177. PubMed ID: 38007634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The detection of drowsiness using a driver monitoring system.
    Schwarz C; Gaspar J; Miller T; Yousefian R
    Traffic Inj Prev; 2019; 20(sup1):S157-S161. PubMed ID: 31381433
    [No Abstract]   [Full Text] [Related]  

  • 4. System and Method for Driver Drowsiness Detection Using Behavioral and Sensor-Based Physiological Measures.
    Bajaj JS; Kumar N; Kaushal RK; Gururaj HL; Flammini F; Natarajan R
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance.
    Naujoks F; Höfling S; Purucker C; Zeeb K
    Accid Anal Prev; 2018 Dec; 121():28-42. PubMed ID: 30205284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driver drowsiness detection based on classification of surface electromyography features in a driving simulator.
    Mahmoodi M; Nahvi A
    Proc Inst Mech Eng H; 2019 Apr; 233(4):395-406. PubMed ID: 30823855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-sensor driver monitoring for drowsiness prediction.
    Schwarz C; Gaspar J; Yousefian R
    Traffic Inj Prev; 2023; 24(sup1):S100-S104. PubMed ID: 37267009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological signal-based drowsiness detection using machine learning: Singular and hybrid signal approaches.
    Hasan MM; Watling CN; Larue GS
    J Safety Res; 2022 Feb; 80():215-225. PubMed ID: 35249601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drowsiness measures for commercial motor vehicle operations.
    Sparrow AR; LaJambe CM; Van Dongen HPA
    Accid Anal Prev; 2019 May; 126():146-159. PubMed ID: 29704947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of scheduled manual driving on drowsiness and response to take over request: A simulator study towards understanding drivers in automated driving.
    Wu Y; Kihara K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    Accid Anal Prev; 2019 Mar; 124():202-209. PubMed ID: 30665055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time driver drowsiness feedback improves driver alertness and self-reported driving performance.
    Aidman E; Chadunow C; Johnson K; Reece J
    Accid Anal Prev; 2015 Aug; 81():8-13. PubMed ID: 25932964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Efficient Approach for Driver Drowsiness Detection at Moderate Drowsiness Level Based on Electroencephalography Signal and Vehicle Dynamics Data.
    Houshmand S; Kazemi R; Salmanzadeh H
    J Med Signals Sens; 2022; 12(4):294-305. PubMed ID: 36726417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating driver drowsiness countermeasures.
    Gaspar JG; Brown TL; Schwarz CW; Lee JD; Kang J; Higgins JS
    Traffic Inj Prev; 2017 May; 18(sup1):S58-S63. PubMed ID: 28323444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB Radar for Intended Use in Car Crash Prevention.
    Leem SK; Khan F; Cho SH
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28556818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driver drowsiness detection based on non-intrusive metrics considering individual specifics.
    Wang X; Xu C
    Accid Anal Prev; 2016 Oct; 95(Pt B):350-357. PubMed ID: 26433567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related differences in effects of non-driving related tasks on takeover performance in automated driving.
    Wu Y; Kihara K; Hasegawa K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    J Safety Res; 2020 Feb; 72():231-238. PubMed ID: 32199568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability.
    Awais M; Badruddin N; Drieberg M
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28858220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drowsy drivers' under-performance in lateral control: How much is too much? Using an integrated measure of lateral control to quantify safe lateral driving.
    van Loon RJ; Brouwer RF; Martens MH
    Accid Anal Prev; 2015 Nov; 84():134-43. PubMed ID: 26412195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microneedle Array Electrode-Based Wearable EMG System for Detection of Driver Drowsiness through Steering Wheel Grip.
    Satti AT; Kim J; Yi E; Cho HY; Cho S
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and prediction of driver drowsiness using artificial neural network models.
    Jacobé de Naurois C; Bourdin C; Stratulat A; Diaz E; Vercher JL
    Accid Anal Prev; 2019 May; 126():95-104. PubMed ID: 29203032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.