These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38306666)

  • 1. Analysis of electrode arrangements for brain stroke diagnosis via electrical impedance tomography through numerical computational models.
    Lee H; Culpepper J; Porter E
    Physiol Meas; 2024 Feb; 45(2):. PubMed ID: 38306666
    [No Abstract]   [Full Text] [Related]  

  • 2. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal combination of electrodes and conductive gels for brain electrical impedance tomography.
    Yang L; Li H; Ding J; Li W; Dong X; Wen Z; Shi X
    Biomed Eng Online; 2018 Dec; 17(1):186. PubMed ID: 30572888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction of electrode modelling errors in multi-frequency EIT imaging.
    Jehl M; Holder D
    Physiol Meas; 2016 Jun; 37(6):893-903. PubMed ID: 27206237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applied machine learning for stroke differentiation by electrical impedance tomography with realistic numerical models.
    Culpepper J; Lee H; Santorelli A; Porter E
    Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37939489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: towards 3D stroke imaging using electrical impedance tomography.
    Dowrick T; Blochet C; Holder D
    Physiol Meas; 2016 Jun; 37(6):765-84. PubMed ID: 27200510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Local Electrodes on Brain Stroke Type Differentiation using Electrical Impedance Tomography.
    Lee H; Culpepper J; Farshkaran A; McDermott B; Porter E
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1412-1415. PubMed ID: 34891549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Abrading Servo Electrode Helmet for Electrical Impedance Tomography.
    Avery J; Packham B; Koo H; Hanson B; Holder D
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33317181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography.
    Nasehi Tehrani J; Oh TI; Jin C; Thiagalingam A; McEwan A
    Comput Biol Med; 2012 Nov; 42(11):1122-32. PubMed ID: 23017828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A non-invasive approach to skin cancer diagnosis via graphene electrical tattoos and electrical impedance tomography.
    Lee H; Johnson Z; Denton S; Liu N; Akinwande D; Porter E; Kireev D
    Physiol Meas; 2024 May; 45(5):. PubMed ID: 38599226
    [No Abstract]   [Full Text] [Related]  

  • 11. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.
    Wagenaar J; Adler A
    Physiol Meas; 2016 Jun; 37(6):922-37. PubMed ID: 27203154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacitively Coupled Electrical Impedance Tomography for Brain Imaging.
    Jiang YD; Soleimani M
    IEEE Trans Med Imaging; 2019 Sep; 38(9):2104-2113. PubMed ID: 30703015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EIT forward problem parallel simulation environment with anisotropic tissue and realistic electrode models.
    De Marco T; Ries F; Guermandi M; Guerrieri R
    IEEE Trans Biomed Eng; 2012 May; 59(5):1229-39. PubMed ID: 22086487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of five types of Ag/AgCl bio-electrodes for cerebral electrical impedance tomography.
    Xu S; Dai M; Xu C; Chen C; Tang M; Shi X; Dong X
    Ann Biomed Eng; 2011 Jul; 39(7):2059-67. PubMed ID: 21455793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stroke type differentiation using spectrally constrained multifrequency EIT: evaluation of feasibility in a realistic head model.
    Malone E; Jehl M; Arridge S; Betcke T; Holder D
    Physiol Meas; 2014 Jun; 35(6):1051-66. PubMed ID: 24844796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Managing erroneous measurements of dynamic brain electrical impedance tomography after reconnection of faulty electrodes.
    Li H; Liu X; Xu C; Yang B; Fu D; Dong X; Fu F
    Physiol Meas; 2020 Apr; 41(3):035002. PubMed ID: 32000152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.
    Yang L; Dai M; Xu C; Zhang G; Li W; Fu F; Shi X; Dong X
    PLoS One; 2017; 12(1):e0170563. PubMed ID: 28107524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of effects of the electrode structure and material in the density measuring system of the peripheral nerve based on micro-electrical impedance tomography.
    Behkami S; Frounchi J; Ghaderi Pakdel F; Stieglitz T
    Biomed Tech (Berl); 2018 Mar; 63(2):151-161. PubMed ID: 28076294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
    Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS
    Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correcting electrode modelling errors in EIT on realistic 3D head models.
    Jehl M; Avery J; Malone E; Holder D; Betcke T
    Physiol Meas; 2015 Dec; 36(12):2423-42. PubMed ID: 26502162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.