These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38306682)
1. Biofabrication of biomimetic undulating microtopography at the dermal-epidermal junction and its effects on the growth and differentiation of epidermal cells. Gao C; Lu C; Liu H; Zhang Y; Qiao H; Jin A; Dai Q; Liu Y Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38306682 [TBL] [Abstract][Full Text] [Related]
2. Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate. Shen Z; Cao Y; Li M; Yan Y; Cheng R; Zhao Y; Shao Q; Wang J; Sang S Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112360. PubMed ID: 34579879 [TBL] [Abstract][Full Text] [Related]
5. A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink. Choi KY; Ajiteru O; Hong H; Suh YJ; Sultan MT; Lee H; Lee JS; Lee YJ; Lee OJ; Kim SH; Park CH Acta Biomater; 2023 Jul; 164():159-174. PubMed ID: 37121370 [TBL] [Abstract][Full Text] [Related]
6. Constructing epidermal rete ridges using a composite hydrogel to enhance multiple signaling pathways for the maintenance of epidermal stem cell niche. Shen Z; Liu Z; Sun L; Li M; Han L; Wang J; Wu X; Sang S Acta Biomater; 2023 Oct; 169():273-288. PubMed ID: 37516415 [TBL] [Abstract][Full Text] [Related]
7. Rete ridges: Morphogenesis, function, regulation, and reconstruction. Shen Z; Sun L; Liu Z; Li M; Cao Y; Han L; Wang J; Wu X; Sang S Acta Biomater; 2023 Jan; 155():19-34. PubMed ID: 36427683 [TBL] [Abstract][Full Text] [Related]
8. A Novel Method for Fabricating the Undulating Structures at Dermal-Epidermal Junction by Composite Molding Process. Qiao H; Gao C; Lu C; Liu H; Zhang Y; Jin A; Dai Q; Yang S; Zhang B; Liu Y J Funct Biomater; 2024 Apr; 15(4):. PubMed ID: 38667559 [TBL] [Abstract][Full Text] [Related]
9. 3D Cell Printing of Perfusable Vascularized Human Skin Equivalent Composed of Epidermis, Dermis, and Hypodermis for Better Structural Recapitulation of Native Skin. Kim BS; Gao G; Kim JY; Cho DW Adv Healthc Mater; 2019 Apr; 8(7):e1801019. PubMed ID: 30358939 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic human skin model patterned with rete ridges. Nagarajan MB; Ainscough AJ; Reynolds DS; Uzel SGM; Bjork JW; Baker BA; McNulty AK; Woulfe SL; Lewis JA Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37734324 [TBL] [Abstract][Full Text] [Related]
11. Skin regeneration stimulation: the role of PCL-platelet gel nanofibrous scaffold. Ranjbarvan P; Soleimani M; Samadi Kuchaksaraei A; Ai J; Faridi Majidi R; Verdi J Microsc Res Tech; 2017 May; 80(5):495-503. PubMed ID: 28124460 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic bilayered gelatin-chondroitin 6 sulfate-hyaluronic acid biopolymer as a scaffold for skin equivalent tissue engineering. Wang TW; Wu HC; Huang YC; Sun JS; Lin FH Artif Organs; 2006 Mar; 30(3):141-9. PubMed ID: 16480388 [TBL] [Abstract][Full Text] [Related]
13. Development of microfabricated dermal epidermal regenerative matrices to evaluate the role of cellular microenvironments on epidermal morphogenesis. Bush KA; Pins GD Tissue Eng Part A; 2012 Nov; 18(21-22):2343-53. PubMed ID: 22724677 [TBL] [Abstract][Full Text] [Related]
14. Tissue engineered plant extracts as nanofibrous wound dressing. Jin G; Prabhakaran MP; Kai D; Annamalai SK; Arunachalam KD; Ramakrishna S Biomaterials; 2013 Jan; 34(3):724-34. PubMed ID: 23111334 [TBL] [Abstract][Full Text] [Related]
15. Promotion of dermal tissue engineering in a rat model using a composite 3D-printed scaffold with electrospun nanofibers and recipient-site preconditioning with an external volume expansion device. Choi HW; Hong J; Kim J; Jeong W; Jo T; Lee HW; Park SW; Choi J J Biomater Appl; 2022 Jul; 37(1):23-32. PubMed ID: 35319292 [TBL] [Abstract][Full Text] [Related]
16. The Importance of Mimicking Dermal-Epidermal Junction for Skin Tissue Engineering: A Review. Aleemardani M; Trikić MZ; Green NH; Claeyssens F Bioengineering (Basel); 2021 Oct; 8(11):. PubMed ID: 34821714 [TBL] [Abstract][Full Text] [Related]
17. Engineering of Uniform Epidermal Layers via Sacrificial Gelatin Bioink-Assisted 3D Extrusion Bioprinting of Skin. Ahn M; Cho WW; Lee H; Park W; Lee SH; Back JW; Gao Q; Gao G; Cho DW; Kim BS Adv Healthc Mater; 2023 Oct; 12(27):e2301015. PubMed ID: 37537366 [TBL] [Abstract][Full Text] [Related]
18. 3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes. Li M; Sun L; Liu Z; Shen Z; Cao Y; Han L; Sang S; Wang J Biomater Sci; 2023 Mar; 11(7):2461-2477. PubMed ID: 36762551 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and multiscale modeling of polycaprolactone/amniotic membrane electrospun nanofiber scaffolds for wound healing. Lotfi Z; Khakbiz M; Davari N; Bonakdar S; Mohammadi J; Shokrgozar MA; Derhambakhsh S Artif Organs; 2023 Aug; 47(8):1267-1284. PubMed ID: 36869662 [TBL] [Abstract][Full Text] [Related]
20. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Jin G; Prabhakaran MP; Ramakrishna S Acta Biomater; 2011 Aug; 7(8):3113-22. PubMed ID: 21550425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]