BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38306713)

  • 1. Nonlinear effects at the electrode-tissue interface of deep brain stimulation electrodes.
    Sridhar K; Evers J; Lowery M
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38306713
    [No Abstract]   [Full Text] [Related]  

  • 2. Stimulation-induced changes at the electrode-tissue interface and their influence on deep brain stimulation.
    Evers J; Sridhar K; Liegey J; Brady J; Jahns H; Lowery M
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35728575
    [No Abstract]   [Full Text] [Related]  

  • 3. In vivo impedance spectroscopy of deep brain stimulation electrodes.
    Lempka SF; Miocinovic S; Johnson MD; Vitek JL; McIntyre CC
    J Neural Eng; 2009 Aug; 6(4):046001. PubMed ID: 19494421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo.
    Wei XF; Grill WM
    J Neural Eng; 2009 Aug; 6(4):046008. PubMed ID: 19587394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.
    Miocinovic S; Lempka SF; Russo GS; Maks CB; Butson CR; Sakaie KE; Vitek JL; McIntyre CC
    Exp Neurol; 2009 Mar; 216(1):166-76. PubMed ID: 19118551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation.
    Miocinovic S; Parent M; Butson CR; Hahn PJ; Russo GS; Vitek JL; McIntyre CC
    J Neurophysiol; 2006 Sep; 96(3):1569-80. PubMed ID: 16738214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of interpolation error, electrode geometry, and the electrode-tissue interface on models of electric fields produced by deep brain stimulation.
    Howell B; Naik S; Grill WM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):297-307. PubMed ID: 24448594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region.
    Chaturvedi A; Foutz TJ; McIntyre CC
    Brain Stimul; 2012 Jul; 5(3):369-377. PubMed ID: 22277548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation.
    Butson CR; McIntyre CC
    Clin Neurophysiol; 2005 Oct; 116(10):2490-500. PubMed ID: 16125463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation.
    Lempka SF; Johnson MD; Miocinovic S; Vitek JL; McIntyre CC
    Clin Neurophysiol; 2010 Dec; 121(12):2128-33. PubMed ID: 20493764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial.
    Witt K; Granert O; Daniels C; Volkmann J; Falk D; van Eimeren T; Deuschl G
    Brain; 2013 Jul; 136(Pt 7):2109-19. PubMed ID: 23801735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions.
    Chaturvedi A; Butson CR; Lempka SF; Cooper SE; McIntyre CC
    Brain Stimul; 2010 Apr; 3(2):65-7. PubMed ID: 20607090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical analysis of the local field potential in deep brain stimulation applications.
    Lempka SF; McIntyre CC
    PLoS One; 2013; 8(3):e59839. PubMed ID: 23555799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-objective particle swarm optimization for postoperative deep brain stimulation targeting of subthalamic nucleus pathways.
    Peña E; Zhang S; Patriat R; Aman JE; Vitek JL; Harel N; Johnson MD
    J Neural Eng; 2018 Dec; 15(6):066020. PubMed ID: 30211697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep brain stimulation: Challenges at the tissue-electrode interface and current solutions.
    Kolaya E; Firestein BL
    Biotechnol Prog; 2021 Sep; 37(5):e3179. PubMed ID: 34056871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical deep brain stimulation strategies for orientation-selective pathway activation.
    Slopsema JP; Peña E; Patriat R; Lehto LJ; Gröhn O; Mangia S; Harel N; Michaeli S; Johnson MD
    J Neural Eng; 2018 Oct; 15(5):056029. PubMed ID: 30095084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.