BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38306772)

  • 1. High throughput methods to study protein-protein interactions during host-pathogen interactions.
    Chandrasekharan G; Unnikrishnan M
    Eur J Cell Biol; 2024 Jun; 103(2):151393. PubMed ID: 38306772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting genome-scale Arabidopsis-Pseudomonas syringae interactome using domain and interolog-based approaches.
    Sahu SS; Weirick T; Kaundal R
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S13. PubMed ID: 25350354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H; Rezaei J; Hugo W; Gao S; Jin J; Fan M; Yong CH; Wozniak M; Wong L
    BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S6. PubMed ID: 24564941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.
    Zhou H; Gao S; Nguyen NN; Fan M; Jin J; Liu B; Zhao L; Xiong G; Tan M; Li S; Wong L
    Biol Direct; 2014 Apr; 9():5. PubMed ID: 24708540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput proteomics and the fight against pathogens.
    Horvatić A; Kuleš J; Guillemin N; Galan A; Mrljak V; Bhide M
    Mol Biosyst; 2016 Jul; 12(8):2373-84. PubMed ID: 27227577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput yeast two-hybrid protocol to determine virus-host protein interactions.
    Striebinger H; Koegl M; Bailer SM
    Methods Mol Biol; 2013; 1064():1-15. PubMed ID: 23996246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using structural knowledge in the protein data bank to inform the search for potential host-microbe protein interactions in sequence space: application to Mycobacterium tuberculosis.
    Mahajan G; Mande SC
    BMC Bioinformatics; 2017 Apr; 18(1):201. PubMed ID: 28376709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and application of a recombination-based library versus library high- throughput yeast two-hybrid (RLL-Y2H) screening system.
    Yang F; Lei Y; Zhou M; Yao Q; Han Y; Wu X; Zhong W; Zhu C; Xu W; Tao R; Chen X; Lin D; Rahman K; Tyagi R; Habib Z; Xiao S; Wang D; Yu Y; Chen H; Fu Z; Cao G
    Nucleic Acids Res; 2018 Feb; 46(3):e17. PubMed ID: 29165646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of host-pathogen protein interactions in melioidosis pathogen Burkholderia pseudomallei and human reveals novel virulence factors and their targets.
    Loaiza CD; Duhan N; Lister M; Kaundal R
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32444871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions.
    Wallqvist A; Wang H; Zavaljevski N; Memišević V; Kwon K; Pieper R; Rajagopala SV; Reifman J
    PLoS One; 2017; 12(11):e0188071. PubMed ID: 29176882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative mapping of host-pathogen protein-protein interactions.
    Shah PS; Wojcechowskyj JA; Eckhardt M; Krogan NJ
    Curr Opin Microbiol; 2015 Oct; 27():62-8. PubMed ID: 26275922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bimolecular fluorescence complementation flow cytometry screen for membrane protein interactions.
    Schmitz F; Glas J; Neutze R; Hedfalk K
    Sci Rep; 2021 Sep; 11(1):19232. PubMed ID: 34584201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The application of high throughput siRNA screening technology to study host-pathogen interactions.
    Ou L; Duan D; Wu J; Nice E; Huang C
    Comb Chem High Throughput Screen; 2012 May; 15(4):299-305. PubMed ID: 22221062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service.
    Kim JG; Park D; Kim BC; Cho SW; Kim YT; Park YJ; Cho HJ; Park H; Kim KB; Yoon KO; Park SJ; Lee BM; Bhak J
    BMC Bioinformatics; 2008 Jan; 9():41. PubMed ID: 18215330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multitask learning for host-pathogen protein interactions.
    Kshirsagar M; Carbonell J; Klein-Seetharaman J
    Bioinformatics; 2013 Jul; 29(13):i217-26. PubMed ID: 23812987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions.
    Martinez-Martin N
    J Immunol Res; 2017; 2017():2197615. PubMed ID: 28321417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering New Pathogen-Host Protein-Protein Interactions by Pairwise Structure Similarity.
    Cui T; Li W; Liu L; Huang Q; He ZG
    PLoS One; 2016; 11(1):e0147612. PubMed ID: 26799490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HPIDB--a unified resource for host-pathogen interactions.
    Kumar R; Nanduri B
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S16. PubMed ID: 20946599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Host-Bacteria Protein Interactions Reveals Conserved Domains and Motifs That Mediate Fundamental Infection Pathways.
    Gómez Borrego J; Torrent Burgas M
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational prediction of host-pathogen protein-protein interactions.
    Dyer MD; Murali TM; Sobral BW
    Bioinformatics; 2007 Jul; 23(13):i159-66. PubMed ID: 17646292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.