These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38306856)
1. Innovative methodology for comprehensive utilization of arsenic-bearing neutralization sludge. Zhang T; Han J; Dong L; Liu D; Jiao F; Qin W; Liu W J Environ Manage; 2024 Feb; 353():120148. PubMed ID: 38306856 [TBL] [Abstract][Full Text] [Related]
2. An all-in-one strategy for resource recovery and immobilization of arsenic from arsenic-bearing gypsum sludge. Yong Y; Yongkui L; Jianhang H; Dapeng Z; Hua W Chemosphere; 2022 Jun; 296():134078. PubMed ID: 35202660 [TBL] [Abstract][Full Text] [Related]
3. Recovery of zinc and extraction of calcium and sulfur from zinc-rich gypsum residue by selective reduction roasting combined with hydrolysis. Zhang T; Han J; Liu W; Jiao F; Jia W; Qin W J Environ Manage; 2023 Apr; 331():117256. PubMed ID: 36642046 [TBL] [Abstract][Full Text] [Related]
4. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. Li YC; Min XB; Chai LY; Shi MQ; Tang CJ; Wang QW; Liang YJ; Lei J; Liyang WJ J Environ Manage; 2016 Oct; 181():756-761. PubMed ID: 27449964 [TBL] [Abstract][Full Text] [Related]
5. Reclamation of an arsenic-bearing gypsum via acid washing and CaO-As stabilization involving svabite formation in thermal treatment. Yang D; Sasaki A; Endo M J Environ Manage; 2019 Feb; 231():811-818. PubMed ID: 30419436 [TBL] [Abstract][Full Text] [Related]
6. One-step removal of high-concentration arsenic from wastewater to form Johnbaumite using arsenic-bearing gypsum. Sun X; Mao M; Lu K; Hu Q; Liu W; Lin Z J Hazard Mater; 2022 Feb; 424(Pt C):127585. PubMed ID: 34753651 [TBL] [Abstract][Full Text] [Related]
7. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag. Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588 [TBL] [Abstract][Full Text] [Related]
8. [Study on the leaching toxicity and disposal method of arsenic-bearing sludge]. Li X; Wu S; Hu B; Gu P Wei Sheng Yan Jiu; 2008 Mar; 37(2):168-71. PubMed ID: 18589599 [TBL] [Abstract][Full Text] [Related]
9. Deep resource utilization of hazardous arsenic-alkali slag: Thermodynamic analysis, mechanism investigation and process optimization. Tian J; Sun W; Han H; Wang Y; Peng J; Zhang X J Environ Manage; 2024 Mar; 355():120440. PubMed ID: 38437740 [TBL] [Abstract][Full Text] [Related]
10. Detoxification and reclamation of hydrometallurgical arsenic- and trace metals-bearing gypsum via hydrothermal recrystallization in acid solution. Ma X; Yao S; Yuan Z; Bi R; Wu X; Zhang J; Wang S; Wang X; Jia Y Chemosphere; 2020 Jul; 250():126290. PubMed ID: 32120149 [TBL] [Abstract][Full Text] [Related]
11. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Liu DG; Min XB; Ke Y; Chai LY; Liang YJ; Li YC; Yao LW; Wang ZB Environ Sci Pollut Res Int; 2018 Mar; 25(8):7600-7607. PubMed ID: 29282669 [TBL] [Abstract][Full Text] [Related]
12. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags. Zhang X; Sun Y; Ma Y; Ji W; Ren Y Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145 [TBL] [Abstract][Full Text] [Related]
13. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste. de Beer M; Maree JP; Liebenberg L; Doucet FJ Waste Manag; 2014 Nov; 34(11):2373-81. PubMed ID: 25128917 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of high-purity precipitated calcium carbonate during the process of recovery of elemental sulphur from gypsum waste. de Beer M; Doucet FJ; Maree JP; Liebenberg L Waste Manag; 2015 Dec; 46():619-27. PubMed ID: 26316100 [TBL] [Abstract][Full Text] [Related]
15. Concrete stabilization of arsenic-bearing iron sludge generated from an electrochemical arsenic remediation plant. Roy A; van Genuchten CM; Mookherjee I; Debsarkar A; Dutta A J Environ Manage; 2019 Mar; 233():141-150. PubMed ID: 30579002 [TBL] [Abstract][Full Text] [Related]
16. Co-treatment of copper electrolytic sludges and copper scraps for the recycled utilization of copper and arsenic. Xu J; Li L; Xu Z; Xiao Y; Lei Y; Liu Y Chemosphere; 2023 Nov; 341():140065. PubMed ID: 37673184 [TBL] [Abstract][Full Text] [Related]
17. Transformation and Detoxification of Typical Metallurgical Hazardous Waste into a Resource: A Review of the Development of Harmless Treatment and Utilization in China. Wang Y; Zhao H; Wang X; Chong J; Huo X; Guo M; Zhang M Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399182 [TBL] [Abstract][Full Text] [Related]
18. Distribution behavior of arsenate into α-calcium sulfate hemihydrate transformed from gypsum in solution. Jia C; Wu L; Chen Q; Lin J; Yang L; Song Z; Guan B Chemosphere; 2020 Sep; 255():126936. PubMed ID: 32417511 [TBL] [Abstract][Full Text] [Related]
19. Rapid-extraction oxidation process to recover and reuse copper chromium and arsenic from industrial wood preservative sludge. Kazi FK; Cooper PA Waste Manag; 2002; 22(3):293-301. PubMed ID: 11952176 [TBL] [Abstract][Full Text] [Related]
20. Cleaning of lead smelting flue gas scrubber sludge and recovery of lead, selenium and mercury by the hydrometallurgical route. Xing P; Ma B; Wang C; Chen Y Environ Technol; 2018 Jun; 39(11):1461-1469. PubMed ID: 28513298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]