These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 38307246)
1. Should the standard model of cellular energy metabolism be reconsidered? Possible coupling between the pentose phosphate pathway, glycolysis and extra-mitochondrial oxidative phosphorylation. Morelli AM; Scholkmann F Biochimie; 2024 Jun; 221():99-109. PubMed ID: 38307246 [TBL] [Abstract][Full Text] [Related]
2. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway. Gebril HM; Avula B; Wang YH; Khan IA; Jekabsons MB Neurochem Int; 2016 Feb; 93():26-39. PubMed ID: 26723542 [TBL] [Abstract][Full Text] [Related]
3. Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes. Ghashghaeinia M; Köberle M; Mrowietz U; Bernhardt I Cell Cycle; 2019 Jun; 18(12):1316-1334. PubMed ID: 31154896 [TBL] [Abstract][Full Text] [Related]
4. Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma. Yang Y; Lane AN; Ricketts CJ; Sourbier C; Wei MH; Shuch B; Pike L; Wu M; Rouault TA; Boros LG; Fan TW; Linehan WM PLoS One; 2013; 8(8):e72179. PubMed ID: 23967283 [TBL] [Abstract][Full Text] [Related]
6. Anti-Warburg Effect of Melatonin: A Proposed Mechanism to Explain its Inhibition of Multiple Diseases. Reiter RJ; Sharma R; Rosales-Corral S Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466614 [TBL] [Abstract][Full Text] [Related]
7. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Stincone A; Prigione A; Cramer T; Wamelink MM; Campbell K; Cheung E; Olin-Sandoval V; Grüning NM; Krüger A; Tauqeer Alam M; Keller MA; Breitenbach M; Brindle KM; Rabinowitz JD; Ralser M Biol Rev Camb Philos Soc; 2015 Aug; 90(3):927-63. PubMed ID: 25243985 [TBL] [Abstract][Full Text] [Related]
8. Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart. Peoples JNR; Maxmillian T; Le Q; Nadtochiy SM; Brookes PS; Porter GA; Davidson VL; Ebert SN J Biol Chem; 2018 May; 293(18):6925-6941. PubMed ID: 29540484 [TBL] [Abstract][Full Text] [Related]
9. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Ganapathy-Kanniappan S Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176 [TBL] [Abstract][Full Text] [Related]
10. Updates to a Jekabsons MB; Gebril HM; Wang YH; Avula B; Khan IA Neurochem Int; 2017 Oct; 109():54-67. PubMed ID: 28412312 [TBL] [Abstract][Full Text] [Related]
11. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. Lei S; Zavala-Flores L; Garcia-Garcia A; Nandakumar R; Huang Y; Madayiputhiya N; Stanton RC; Dodds ED; Powers R; Franco R ACS Chem Biol; 2014 Sep; 9(9):2032-48. PubMed ID: 24937102 [TBL] [Abstract][Full Text] [Related]
12. Itaconate regulates the glycolysis/pentose phosphate pathway transition to maintain boar sperm linear motility by regulating redox homeostasis. Zhu Z; Umehara T; Tsujita N; Kawai T; Goto M; Cheng B; Zeng W; Shimada M Free Radic Biol Med; 2020 Nov; 159():44-53. PubMed ID: 32745767 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation. De Preter G; Neveu MA; Danhier P; Brisson L; Payen VL; Porporato PE; Jordan BF; Sonveaux P; Gallez B Oncotarget; 2016 Jan; 7(3):2910-20. PubMed ID: 26543237 [TBL] [Abstract][Full Text] [Related]
14. Virtually identical does not mean exactly identical: Discrepancy in energy metabolism between glucose and fructose fermentation influences the reproductive potential of yeast cells. Maslanka R; Bednarska S; Zadrag-Tecza R Arch Biochem Biophys; 2024 Jun; 756():110021. PubMed ID: 38697344 [TBL] [Abstract][Full Text] [Related]
15. Implications of glycolytic and pentose phosphate pathways on the oxidative status and active mitochondria of the porcine oocyte during IVM. Alvarez GM; Casiró S; Gutnisky C; Dalvit GC; Sutton-McDowall ML; Thompson JG; Cetica PD Theriogenology; 2016 Dec; 86(9):2096-2106. PubMed ID: 27597631 [TBL] [Abstract][Full Text] [Related]
16. Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit. Gerbitz KD; Gempel K; Brdiczka D Diabetes; 1996 Feb; 45(2):113-26. PubMed ID: 8549853 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the pentose phosphate pathway in cancer. Jiang P; Du W; Wu M Protein Cell; 2014; 5(8):592-602. PubMed ID: 25015087 [TBL] [Abstract][Full Text] [Related]
19. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect. Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077 [TBL] [Abstract][Full Text] [Related]
20. Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose. Miwa H; Shikami M; Goto M; Mizuno S; Takahashi M; Tsunekawa-Imai N; Ishikawa T; Mizutani M; Horio T; Gotou M; Yamamoto H; Wakabayashi M; Watarai M; Hanamura I; Imamura A; Mihara H; Nitta M Oncol Rep; 2013 May; 29(5):2053-7. PubMed ID: 23440281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]