BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38307316)

  • 1. Interaction of the antifungal ketoconazole and its diphenylphosphine derivatives with lipid bilayers: Insights into their antifungal action.
    Bento-Oliveira A; Starosta R; de Almeida RFM
    Arch Biochem Biophys; 2024 Mar; 753():109919. PubMed ID: 38307316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New diphenylphosphane derivatives of ketoconazole are promising antifungal agents.
    de Almeida RFM; Santos FC; Marycz K; Alicka M; Krasowska A; Suchodolski J; Panek JJ; Jezierska A; Starosta R
    Sci Rep; 2019 Nov; 9(1):16214. PubMed ID: 31700024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of azole compounds with DOPC and DOPC/ergosterol bilayers by spin probe EPR spectroscopy: implications for antifungal activity.
    Cicogna F; Pinzino C; Castellano S; Porta A; Forte C; Calucci L
    J Phys Chem B; 2013 Oct; 117(40):11978-87. PubMed ID: 24032998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical properties of ergosterol-enriched lipid rafts in yeast and tools for their study: characterization of ergosterol/phosphatidylcholine membranes with three fluorescent membrane probes.
    Bastos AE; Marinho HS; Cordeiro AM; de Soure AM; de Almeida RF
    Chem Phys Lipids; 2012 Jul; 165(5):577-88. PubMed ID: 22705749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of NBD-labelled fatty amines with liquid-ordered membranes: a combined molecular dynamics simulation and fluorescence spectroscopy study.
    Filipe HA; Bowman D; Palmeira T; Cardoso RM; Loura LM; Moreno MJ
    Phys Chem Chem Phys; 2015 Nov; 17(41):27534-47. PubMed ID: 26426766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers.
    Frey S; Tamm LK
    Biochem J; 1990 Dec; 272(3):713-9. PubMed ID: 2176475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane permeabilizing action of amphidinol 3 and theonellamide A in raft-forming lipid mixtures.
    Espiritu RA
    Z Naturforsch C J Biosci; 2017 Jan; 72(1-2):43-48. PubMed ID: 27159918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the sterol superlattice in the partitioning of the antifungal drug nystatin into lipid membranes.
    Wang MM; Sugar IP; Chong PL
    Biochemistry; 1998 Aug; 37(34):11797-805. PubMed ID: 9718302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of phosphatidylserine synthase from E. coli with lipid bilayers: coupled plasmon-waveguide resonance spectroscopy studies.
    Salamon Z; Lindblom G; Rilfors L; Linde K; Tollin G
    Biophys J; 2000 Mar; 78(3):1400-12. PubMed ID: 10692325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New anticandidal Cu(i) complexes with neocuproine and ketoconazole derived diphenyl(aminomethyl)phosphane: luminescence properties for detection in fungal cells.
    Starosta R; de Almeida RFM; Puchalska M; Białońska A; Panek JJ; Jezierska A; Szmigiel I; Suchodolski J; Krasowska A
    Dalton Trans; 2020 Jul; 49(25):8528-8539. PubMed ID: 32525156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of oxidation on POPC lipid bilayers: anionic carboxyl group plays a major role.
    Bagheri B; Boonnoy P; Wong-Ekkabut J; Karttunen M
    Phys Chem Chem Phys; 2023 Jul; 25(27):18310-18321. PubMed ID: 37401178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes.
    Hyslop PA; Morel B; Sauerheber RD
    Biochemistry; 1990 Jan; 29(4):1025-38. PubMed ID: 2160270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions and dynamics of two extended conformation adapting phosphatidylcholines in model biomembranes.
    Amirkavei M; Kinnunen PK
    Biochim Biophys Acta; 2016 Feb; 1858(2):264-73. PubMed ID: 26656184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of Hoechst 33342 with POPC Membranes at Different pH Values.
    Cordeiro MM; Filipe HAL; Santos PD; Samelo J; Ramalho JPP; Loura LMS; Moreno MJ
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unassisted N-acetyl-phenylalanine-amide transport across membrane with varying lipid size and composition: kinetic measurements and atomistic molecular dynamics simulation.
    Lee BL; Kuczera K; Lee KH; Childs EW; Jas GS
    J Biomol Struct Dyn; 2022 Mar; 40(4):1445-1460. PubMed ID: 33034537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Characterization of Cholesterol Partitioning between Binary Bilayers.
    Park S; Im W
    J Chem Theory Comput; 2018 Jun; 14(6):2829-2833. PubMed ID: 29733641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
    Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK
    Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation and Orientation of Antimicrobial Peptides MSI-594 and MSI-594A in a Lipid Membrane.
    Yang P; Guo W; Ramamoorthy A; Chen Z
    Langmuir; 2023 Apr; 39(15):5352-5363. PubMed ID: 37017985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.