These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38308417)

  • 1. Ultrathin H-MXM as An "Ion Freeway" for High-Performance Osmotic Energy Conversion.
    Dong Q; Liu J; Wang Y; He J; Zhai J; Fan X
    Small Methods; 2024 Feb; ():e2301558. PubMed ID: 38308417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oppositely Charged Ti
    Ding L; Xiao D; Lu Z; Deng J; Wei Y; Caro J; Wang H
    Angew Chem Int Ed Engl; 2020 May; 59(22):8720-8726. PubMed ID: 31950586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion.
    Ding L; Xiao D; Zhao Z; Wei Y; Xue J; Wang H
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202869. PubMed ID: 35780505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.
    Zhang Z; Sui X; Li P; Xie G; Kong XY; Xiao K; Gao L; Wen L; Jiang L
    J Am Chem Soc; 2017 Jul; 139(26):8905-8914. PubMed ID: 28602079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Nanofluidic Membranes with Intercalated In-Plane Shortcuts for High-Performance Blue Energy Harvesting.
    Yan PP; Chen XC; Liang ZX; Fang YP; Yao J; Lu CX; Cai Y; Jiang L
    Small; 2023 Jan; 19(4):e2205003. PubMed ID: 36424182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Ti
    Hong S; Ming F; Shi Y; Li R; Kim IS; Tang CY; Alshareef HN; Wang P
    ACS Nano; 2019 Aug; 13(8):8917-8925. PubMed ID: 31305989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes.
    Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z
    J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators.
    Zhang Z; Yang S; Zhang P; Zhang J; Chen G; Feng X
    Nat Commun; 2019 Jul; 10(1):2920. PubMed ID: 31266937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydopamine functionalized graphene oxide membrane with the sandwich structure for osmotic energy conversion.
    Hao J; Ning Y; Hou Y; Ma S; Lin C; Zhao J; Li C; Sui X
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):795-803. PubMed ID: 36279838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure.
    Yang ZJ; Yeh LH; Peng YH; Chuang YP; Wu KC
    Angew Chem Int Ed Engl; 2024 Jun; ():e202408375. PubMed ID: 38847272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial Super-Assembly of Ordered Mesoporous Silica-Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting.
    Zhou S; Xie L; Zhang L; Wen L; Tang J; Zeng J; Liu T; Peng D; Yan M; Qiu B; Liang Q; Liang K; Jiang L; Kong B
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8782-8793. PubMed ID: 33560109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous CNF/MoO
    Zheng M; Liu P; Yan P; Zhou T; Lin X; Li X; Wen L; Xu Q
    Mater Horiz; 2024 Jul; 11(14):3375-3385. PubMed ID: 38686603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes.
    Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J
    J Colloid Interface Sci; 2024 Jun; 673():365-372. PubMed ID: 38878371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Strength MXene/PBONF Heterogeneous Membrane with Excellent Ion Selectivity for Efficient Osmotic Energy Conversion.
    Duan R; Zhou J; Ma X; Hao J; Zhao D; Teng C; Zhou Y; Jiang L
    Nano Lett; 2023 Dec; 23(23):11043-11050. PubMed ID: 38032845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion.
    Fu W; Zhang J; Zhang Q; Ahmad M; Sun Z; Li Z; Zhu Y; Zhou Y; Wang S
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128546. PubMed ID: 38061510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting.
    Lin C; Hao J; Zhao J; Hou Y; Ma S; Sui X
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):840-847. PubMed ID: 37898068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant Blue Energy Harvesting in Two-Dimensional Polymer Membranes with Spatially Aligned Charges.
    Liu X; Li X; Chu X; Zhang B; Zhang J; Hambsch M; Mannsfeld SCB; Borrelli M; Löffler M; Pohl D; Liu Y; Zhang Z; Feng X
    Adv Mater; 2024 May; 36(18):e2310791. PubMed ID: 38299804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Ti
    Ding L; Zheng M; Xiao D; Zhao Z; Xue J; Zhang S; Caro J; Wang H
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202206152. PubMed ID: 35768337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered Cellulose Nanofiber Membranes with Ultrathin Low-Dimensional Carbon Material Layers for Photothermal-Enhanced Osmotic Energy Conversion.
    Luo Q; Liu P; Fu L; Hu Y; Yang L; Wu W; Kong XY; Jiang L; Wen L
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13223-13230. PubMed ID: 35262329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.