These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38308936)

  • 21. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain.
    Hesse LL; Bakay W; Ong HC; Anderson L; Ashmore J; McAlpine D; Linden J; Schaette R
    Front Neurol; 2016; 7():133. PubMed ID: 27625631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: A Wiener-kernel analysis.
    Heeringa AN; van Dijk P
    Hear Res; 2016 Jan; 331():47-56. PubMed ID: 26523371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of GDF15 in attenuating noise-induced hidden hearing loss by alleviating oxidative stress.
    Jiang Y; Zheng Z; Zhu J; Zhang P; Li S; Fu Y; Wang F; Zhang Z; Chang T; Zhang M; Ruan B; Wang X
    Cell Biol Toxicol; 2024 Sep; 40(1):79. PubMed ID: 39289208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binaural Processing Deficits Due to Synaptopathy and Myelin Defects.
    Budak M; Roberts MT; Grosh K; Corfas G; Booth V; Zochowski M
    Front Neural Circuits; 2022; 16():856926. PubMed ID: 35498371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hidden hearing loss: Fifteen years at a glance.
    Liu J; Stohl J; Overath T
    Hear Res; 2024 Mar; 443():108967. PubMed ID: 38335624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears.
    Fernandez KA; Jeffers PW; Lall K; Liberman MC; Kujawa SG
    J Neurosci; 2015 May; 35(19):7509-20. PubMed ID: 25972177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related Changes in Neural Coding of Envelope Cues: Peripheral Declines and Central Compensation.
    Parthasarathy A; Bartlett EL; Kujawa SG
    Neuroscience; 2019 May; 407():21-31. PubMed ID: 30553793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Animal models of hidden hearing loss: Does auditory-nerve-fiber loss cause real-world listening difficulties?
    Henry KS
    Mol Cell Neurosci; 2022 Jan; 118():103692. PubMed ID: 34883241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auditory central gain compensates for changes in cochlear output after prolonged low-level noise exposure.
    Sheppard A; Liu X; Ding D; Salvi R
    Neurosci Lett; 2018 Nov; 687():183-188. PubMed ID: 30273699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural coding of the sound envelope is changed in the inferior colliculus immediately following acoustic trauma.
    Heeringa AN; van Dijk P
    Eur J Neurosci; 2019 May; 49(10):1220-1232. PubMed ID: 30549334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specific loss of neural sensitivity to interaural time difference of unmodulated noise stimuli following noise-induced hearing loss.
    Haragopal H; Dorkoski R; Pollard AR; Whaley GA; Wohl TR; Stroud NC; Day ML
    J Neurophysiol; 2020 Oct; 124(4):1165-1182. PubMed ID: 32845200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential impact of temporary and permanent noise-induced hearing loss on neuronal cell density in the mouse central auditory pathway.
    Gröschel M; Götze R; Ernst A; Basta D
    J Neurotrauma; 2010 Aug; 27(8):1499-507. PubMed ID: 20504154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasticity of response properties of inferior colliculus neurons following acute cochlear damage.
    Wang J; Salvi RJ; Powers N
    J Neurophysiol; 1996 Jan; 75(1):171-83. PubMed ID: 8822550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
    Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S
    Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of high-intensity sound on cochlear microphonics and activity of inferior colliculus neurons in the guinea pig.
    Popelár J; Syka J; Ulehlová L
    Arch Otorhinolaryngol; 1978 Sep; 221(2):115-22. PubMed ID: 751616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiology of the young adult Fischer 344 rat inferior colliculus: responses to contralateral monaural stimuli.
    Palombi PS; Caspary DM
    Hear Res; 1996 Oct; 100(1-2):41-58. PubMed ID: 8922979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Central tinnitus and lateral inhibition: an auditory brainstem model.
    Gerken GM
    Hear Res; 1996 Aug; 97(1-2):75-83. PubMed ID: 8844188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrasting mechanisms for hidden hearing loss: Synaptopathy vs myelin defects.
    Budak M; Grosh K; Sasmal A; Corfas G; Zochowski M; Booth V
    PLoS Comput Biol; 2021 Jan; 17(1):e1008499. PubMed ID: 33481777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic Middle-Ear-Muscle-Reflex Thresholds in Humans with Normal Audiograms: No Relations to Tinnitus, Speech Perception in Noise, or Noise Exposure.
    Guest H; Munro KJ; Plack CJ
    Neuroscience; 2019 May; 407():75-82. PubMed ID: 30579832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas.
    Henry KS; Kale S; Scheidt RE; Heinz MG
    Hear Res; 2011 Oct; 280(1-2):236-44. PubMed ID: 21699970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.