These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38308955)

  • 21. Umami-BERT: An interpretable BERT-based model for umami peptides prediction.
    Zhang J; Yan W; Zhang Q; Li Z; Liang L; Zuo M; Zhang Y
    Food Res Int; 2023 Oct; 172():113142. PubMed ID: 37689906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic detection of actionable radiology reports using bidirectional encoder representations from transformers.
    Nakamura Y; Hanaoka S; Nomura Y; Nakao T; Miki S; Watadani T; Yoshikawa T; Hayashi N; Abe O
    BMC Med Inform Decis Mak; 2021 Sep; 21(1):262. PubMed ID: 34511100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adversarial active learning for the identification of medical concepts and annotation inconsistency.
    Yu G; Yang Y; Wang X; Zhen H; He G; Li Z; Zhao Y; Shu Q; Shu L
    J Biomed Inform; 2020 Aug; 108():103481. PubMed ID: 32687985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-label emotion classification of Urdu tweets.
    Ashraf N; Khan L; Butt S; Chang HT; Sidorov G; Gelbukh A
    PeerJ Comput Sci; 2022; 8():e896. PubMed ID: 35494831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying the Perceived Severity of Patient-Generated Telemedical Queries Regarding COVID: Developing and Evaluating a Transfer Learning-Based Solution.
    Gatto J; Seegmiller P; Johnston G; Preum SM
    JMIR Med Inform; 2022 Sep; 10(9):e37770. PubMed ID: 35981230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model.
    Jiang X; Song C; Xu Y; Li Y; Peng Y
    PeerJ Comput Sci; 2022; 8():e1005. PubMed ID: 35721405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BERT-based Transfer Learning in Sentence-level Anatomic Classification of Free-Text Radiology Reports.
    Nishigaki D; Suzuki Y; Wataya T; Kita K; Yamagata K; Sato J; Kido S; Tomiyama N
    Radiol Artif Intell; 2023 Mar; 5(2):e220097. PubMed ID: 37035437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT).
    Li J; Lin Y; Zhao P; Liu W; Cai L; Sun J; Zhao L; Yang Z; Song H; Lv H; Wang Z
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):200. PubMed ID: 35907966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IUP-BERT: Identification of Umami Peptides Based on BERT Features.
    Jiang L; Jiang J; Wang X; Zhang Y; Zheng B; Liu S; Zhang Y; Liu C; Wan Y; Xiang D; Lv Z
    Foods; 2022 Nov; 11(22):. PubMed ID: 36429332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural Language Processing Algorithms for Normalizing Expressions of Synonymous Symptoms in Traditional Chinese Medicine.
    Zhou L; Liu S; Li C; Sun Y; Zhang Y; Li Y; Yuan H; Sun Y; Xu F; Li Y
    Evid Based Complement Alternat Med; 2021; 2021():6676607. PubMed ID: 34671408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MPMABP: A CNN and Bi-LSTM-Based Method for Predicting Multi-Activities of Bioactive Peptides.
    Li Y; Li X; Liu Y; Yao Y; Huang G
    Pharmaceuticals (Basel); 2022 Jun; 15(6):. PubMed ID: 35745625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A BERT Framework to Sentiment Analysis of Tweets.
    Bello A; Ng SC; Leung MF
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep learning-based multi-functional therapeutic peptides prediction with a multi-label focal dice loss function.
    Fan H; Yan W; Wang L; Liu J; Bin Y; Xia J
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37216900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring deep learning methods for recognizing rare diseases and their clinical manifestations from texts.
    Segura-Bedmar I; Camino-Perdones D; Guerrero-Aspizua S
    BMC Bioinformatics; 2022 Jul; 23(1):263. PubMed ID: 35794528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advancing Drug-Target Interaction prediction with BERT and subsequence embedding.
    Yang Z; Liu J; Yang F; Zhang X; Zhang Q; Zhu X; Jiang P
    Comput Biol Chem; 2024 Jun; 110():108058. PubMed ID: 38593480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BJBN: BERT-JOIN-BiLSTM Networks for Medical Auxiliary Diagnostic.
    Xu C; Yuan F; Chen S
    J Healthc Eng; 2022; 2022():3496810. PubMed ID: 35070235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BERT-Kcr: prediction of lysine crotonylation sites by a transfer learning method with pre-trained BERT models.
    Qiao Y; Zhu X; Gong H
    Bioinformatics; 2022 Jan; 38(3):648-654. PubMed ID: 34643684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactive Dual Attention Network for Text Sentiment Classification.
    Zhu Y; Zheng W; Tang H
    Comput Intell Neurosci; 2020; 2020():8858717. PubMed ID: 33204245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An imConvNet-based deep learning model for Chinese medical named entity recognition.
    Zheng Y; Han Z; Cai Y; Duan X; Sun J; Yang W; Huang H
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):303. PubMed ID: 36411432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.