These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38308955)

  • 61. Automatic Extraction of Lung Cancer Staging Information From Computed Tomography Reports: Deep Learning Approach.
    Hu D; Zhang H; Li S; Wang Y; Wu N; Lu X
    JMIR Med Inform; 2021 Jul; 9(7):e27955. PubMed ID: 34287213
    [TBL] [Abstract][Full Text] [Related]  

  • 62. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 63. ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types.
    Deng H; Ding M; Wang Y; Li W; Liu G; Tang Y
    Comput Biol Med; 2023 May; 158():106844. PubMed ID: 37058760
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Classifying the lifestyle status for Alzheimer's disease from clinical notes using deep learning with weak supervision.
    Shen Z; Schutte D; Yi Y; Bompelli A; Yu F; Wang Y; Zhang R
    BMC Med Inform Decis Mak; 2022 Jul; 22(Suppl 1):88. PubMed ID: 35799294
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optimizing classification of diseases through language model analysis of symptoms.
    Hassan E; Abd El-Hafeez T; Shams MY
    Sci Rep; 2024 Jan; 14(1):1507. PubMed ID: 38233458
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Extracting postmarketing adverse events from safety reports in the vaccine adverse event reporting system (VAERS) using deep learning.
    Du J; Xiang Y; Sankaranarayanapillai M; Zhang M; Wang J; Si Y; Pham HA; Xu H; Chen Y; Tao C
    J Am Med Inform Assoc; 2021 Jul; 28(7):1393-1400. PubMed ID: 33647938
    [TBL] [Abstract][Full Text] [Related]  

  • 67. When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification.
    Li X; Yuan W; Peng D; Mei Q; Wang Y
    BMC Med Inform Decis Mak; 2022 Apr; 21(Suppl 9):377. PubMed ID: 35382811
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Deep Learning-Based Natural Language Processing in Radiology: The Impact of Report Complexity, Disease Prevalence, Dataset Size, and Algorithm Type on Model Performance.
    Olthof AW; van Ooijen PMA; Cornelissen LJ
    J Med Syst; 2021 Sep; 45(10):91. PubMed ID: 34480231
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Traditional Chinese medicine clinical records classification with BERT and domain specific corpora.
    Yao L; Jin Z; Mao C; Zhang Y; Luo Y
    J Am Med Inform Assoc; 2019 Dec; 26(12):1632-1636. PubMed ID: 31550356
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A BERT based dual-channel explainable text emotion recognition system.
    Kumar P; Raman B
    Neural Netw; 2022 Jun; 150():392-407. PubMed ID: 35358887
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identifying Risk Factors Associated With Lower Back Pain in Electronic Medical Record Free Text: Deep Learning Approach Using Clinical Note Annotations.
    Jaiswal A; Katz A; Nesca M; Milios E
    JMIR Med Inform; 2023 Aug; 11():e45105. PubMed ID: 37584559
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Attention-Based Models for Classifying Small Data Sets Using Community-Engaged Research Protocols: Classification System Development and Validation Pilot Study.
    Ferrell BJ; Raskin SE; Zimmerman EB; Timberline DH; McInnes BT; Krist AH
    JMIR Form Res; 2022 Sep; 6(9):e32460. PubMed ID: 36066925
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Emotion Analysis Based on Deep Learning With Application to Research on Development of Western Culture.
    Chen M
    Front Psychol; 2022; 13():911686. PubMed ID: 36186353
    [TBL] [Abstract][Full Text] [Related]  

  • 75. TSFN: A Novel Malicious Traffic Classification Method Using BERT and LSTM.
    Shi Z; Luktarhan N; Song Y; Yin H
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238576
    [TBL] [Abstract][Full Text] [Related]  

  • 76. HLAB: learning the BiLSTM features from the ProtBert-encoded proteins for the class I HLA-peptide binding prediction.
    Zhang Y; Zhu G; Li K; Li F; Huang L; Duan M; Zhou F
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514183
    [TBL] [Abstract][Full Text] [Related]  

  • 77. FG-BERT: a generalized and self-supervised functional group-based molecular representation learning framework for properties prediction.
    Li B; Lin M; Chen T; Wang L
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37930026
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Automatic symptoms identification from a massive volume of unstructured medical consultations using deep neural and BERT models.
    Faris H; Faris M; Habib M; Alomari A
    Heliyon; 2022 Jun; 8(6):e09683. PubMed ID: 35761935
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Designing antimicrobial peptides using deep learning and molecular dynamic simulations.
    Cao Q; Ge C; Wang X; Harvey PJ; Zhang Z; Ma Y; Wang X; Jia X; Mobli M; Craik DJ; Jiang T; Yang J; Wei Z; Wang Y; Chang S; Yu R
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857616
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods.
    Ayoobi N; Sharifrazi D; Alizadehsani R; Shoeibi A; Gorriz JM; Moosaei H; Khosravi A; Nahavandi S; Gholamzadeh Chofreh A; Goni FA; Klemeš JJ; Mosavi A
    Results Phys; 2021 Aug; 27():104495. PubMed ID: 34221854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.