BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38309068)

  • 1. Structural Fe(II)-induced generation of reactive oxygen species on magnetite surface for aqueous As(III) oxidation during oxygen activation.
    Meng F; Tong H; Feng C; Huang Z; Wu P; Zhou J; Hua J; Wu F; Liu C
    Water Res; 2024 Mar; 252():121232. PubMed ID: 38309068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Interfacial Action on the Generation and Transformation of Reactive Oxygen Species in Tripolyphosphate-Enhanced Heterogeneous Fe
    Zhang C; Kong C; Tratnyek PG; Qin C; Zhao Y; Piao Y
    Environ Sci Technol; 2024 Jan; 58(2):1378-1389. PubMed ID: 38179651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shewanella oneidensis MR-1 dissimilatory reduction of ferrihydrite to highly enhance mineral transformation and reactive oxygen species production in redox-fluctuating environments.
    Yang L; Wu H; Zhao Y; Tan X; Wei Y; Guan Y; Huang G
    Chemosphere; 2024 Mar; 352():141364. PubMed ID: 38336034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights into Sb(III) and Fe(II) co-oxidation by oxygen and hydrogen peroxide: Dominant reactive oxygen species and roles of organic ligands.
    Wang Y; Kong L; He M; Lin C; Ouyang W; Liu X; Peng X
    Water Res; 2023 Aug; 242():120296. PubMed ID: 37413752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between green rust and tribromophenol under anoxic, oxic and anoxic-to-oxic conditions: Adsorption, desorption and oxidative degradation.
    Zhang X; Jia Q; Deng J; Wu F; Huang LZ
    Water Res; 2022 Jun; 217():118398. PubMed ID: 35413564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuating redox conditions accelerate the electron storage and transfer in magnetite and production of dark hydroxyl radicals.
    Li D; Sun J; Fu Y; Hong W; Wang H; Yang Q; Wu J; Yang S; Xu J; Zhang Y; Deng Y; Zhong Y; Peng P
    Water Res; 2024 Jan; 248():120884. PubMed ID: 38006832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of Cu into Goethite Stimulates Oxygen Activation by Surface-Bound Fe(II) for Enhanced As(III) Oxidative Transformation.
    Hong Z; Li F; Borch T; Shi Q; Fang L
    Environ Sci Technol; 2023 Feb; 57(5):2162-2174. PubMed ID: 36703566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groundwater-native Fe(II) oxidation prior to aeration with H
    Roy M; van Genuchten CM; Rietveld L; van Halem D
    Water Res; 2022 Sep; 223():119007. PubMed ID: 36044797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical Role of Mineral Fe(IV) Formation in Low Hydroxyl Radical Yields during Fe(II)-Bearing Clay Mineral Oxygenation.
    Yu C; Ji W; Li X; Yuan S; Zhang P; Pu S
    Environ Sci Technol; 2024 Jun; 58(22):9669-9678. PubMed ID: 38771965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review.
    Fan Q; Wang L; Fu Y; Li Q; Liu Y; Wang Z; Zhu H
    Sci Total Environ; 2023 Jan; 855():159003. PubMed ID: 36155041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of Hg(II) to Hg(0) by magnetite.
    Wiatrowski HA; Das S; Kukkadapu R; Ilton ES; Barkay T; Yee N
    Environ Sci Technol; 2009 Jul; 43(14):5307-13. PubMed ID: 19708358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady release-activation of hydrogen peroxide and molecular oxygen towards the removal of ciprofloxacin in the FeOCl/CaO
    Wang L; Yang H; Yao J; Wu Q; He Z; Yang Y
    Chemosphere; 2022 Dec; 308(Pt 1):136156. PubMed ID: 36029866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced generation of reactive oxygen species by pyrite for As(III) oxidation and immobilization: The vital role of Fe(II).
    Wu X; Yang J; Liu S; He Z; Wang Y; Qin W; Si Y
    Chemosphere; 2022 Dec; 309(Pt 2):136793. PubMed ID: 36220433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-magnetite supported by biochar pyrolyzed at different temperatures as hydrogen peroxide activator: Synthesis mechanism and the effects on ethylbenzene removal.
    Yan J; Yang L; Qian L; Han L; Chen M
    Environ Pollut; 2020 Jun; 261():114020. PubMed ID: 32066062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioproduction of cerium-bearing magnetite and application to improve carbon-black supported platinum catalysts.
    Xie J; Zhao Z; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Holmes SM; Lloyd JR
    J Nanobiotechnology; 2024 Apr; 22(1):203. PubMed ID: 38659001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Insights into Sb(III) Oxidation and Immobilization during Ferrous Iron Oxygenation: The Overlooked Roles of Singlet Oxygen and Fe (oxyhydr)oxides Formation.
    Wang Y; He M; Lin C; Ouyang W; Liu X
    Environ Sci Technol; 2024 Jun; ():. PubMed ID: 38864425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions.
    Liu L; Guo D; Qiu G; Liu C; Ning Z
    J Environ Manage; 2022 Sep; 317():115425. PubMed ID: 35751250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Extracellular Enzyme Activity by Reactive Oxygen Species upon Oxygenation of Reduced Iron-Bearing Minerals.
    Sheng Y; Hu J; Kukkadapu R; Guo D; Zeng Q; Dong H
    Environ Sci Technol; 2023 Feb; 57(8):3425-3433. PubMed ID: 36795461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.