BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38309147)

  • 1. Generation of hiPSCs (JUCGRMi003-A) from a patient with Parkinson's disease with PARK2 mutation.
    Ishikawa KI; Okuzumi A; Yoshino H; Hattori N; Akamatsu W
    Stem Cell Res; 2024 Apr; 76():103323. PubMed ID: 38309147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of three induced pluripotent stem cell lines from a Parkinson's disease patient with mutant PARKIN (p. C253Y).
    Tariq M; Liu H; Ibañez DP; Li Y; Chen S; Jiang M; Fan W; Zhao P; Luo Z; Wang D; Kanwal S
    Stem Cell Res; 2020 May; 45():101822. PubMed ID: 32387897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of bioactive metabolites in human iPSC-derived dopaminergic neurons with PARK2 mutation: Altered mitochondrial and energy metabolism.
    Okarmus J; Havelund JF; Ryding M; Schmidt SI; Bogetofte H; Heon-Roberts R; Wade-Martins R; Cowley SA; Ryan BJ; Færgeman NJ; Hyttel P; Meyer M
    Stem Cell Reports; 2021 Jun; 16(6):1510-1526. PubMed ID: 34048689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of the iPSC line FINi002-A from a male Parkinson's disease patient carrying compound heterozygous mutations in the PRKN gene.
    Pavan C; Jin J; Jong S; Strbenac D; Davis RL; Sue CM; Johnston J; Lynch T; Halliday G; Kirik D; Parish CL; Thompson LH; Ovchinnikov DA
    Stem Cell Res; 2023 Dec; 73():103211. PubMed ID: 37890334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of an induced pluripotent stem cell line (CSC-44) from a Parkinson's disease patient carrying a compound heterozygous mutation (c.823C>T and EX6 del) in the PARK2 gene.
    Marote A; Pomeshchik Y; Goldwurm S; Collin A; Lamas NJ; Pinto L; Salgado AJ; Roybon L
    Stem Cell Res; 2018 Mar; 27():90-94. PubMed ID: 29353703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of two human induced pluripotent stem cell lines from fibroblasts of Parkinson's disease patients carrying the ILE368ASN mutation in PINK1 (LCSBi002) and the R275W mutation in Parkin (LCSBI004).
    Novak G; Finkbeiner S; Skibinski G; Bernini M; Donato C; Skupin A
    Stem Cell Res; 2022 May; 61():102765. PubMed ID: 35378365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-specific overexpression of COMT in dopaminergic neurons of Parkinson's disease.
    Kuzumaki N; Suda Y; Iwasawa C; Narita M; Sone T; Watanabe M; Maekawa A; Matsumoto T; Akamatsu W; Igarashi K; Tamura H; Takeshima H; Tawfik VL; Ushijima T; Hattori N; Okano H; Narita M
    Brain; 2019 Jun; 142(6):1675-1689. PubMed ID: 31135049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines.
    Shaltouki A; Sivapatham R; Pei Y; Gerencser AA; Momčilović O; Rao MS; Zeng X
    Stem Cell Reports; 2015 May; 4(5):847-59. PubMed ID: 25843045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and characterization of induced pluripotent stem cell (iPSC) lines of two asymptomatic individuals carrying a heterozygous exon 7 deletion in Parkin (PRKN) and two non-carriers from the same family.
    Castelo Rueda MP; Gilmozzi V; Riekschnitz DA; Di Segni M; Silipigni R; Pramstaller PP; Hicks AA; Pichler I; Zanon A
    Stem Cell Res; 2022 Apr; 60():102692. PubMed ID: 35121197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbations in RhoA signalling cause altered migration and impaired neuritogenesis in human iPSC-derived neural cells with PARK2 mutation.
    Bogetofte H; Jensen P; Okarmus J; Schmidt SI; Agger M; Ryding M; Nørregaard P; Fenger C; Zeng X; Graakjær J; Ryan BJ; Wade-Martins R; Larsen MR; Meyer M
    Neurobiol Dis; 2019 Dec; 132():104581. PubMed ID: 31445161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila.
    Zanon A; Kalvakuri S; Rakovic A; Foco L; Guida M; Schwienbacher C; Serafin A; Rudolph F; Trilck M; Grünewald A; Stanslowsky N; Wegner F; Giorgio V; Lavdas AA; Bodmer R; Pramstaller PP; Klein C; Hicks AA; Pichler I; Seibler P
    Hum Mol Genet; 2017 Jul; 26(13):2412-2425. PubMed ID: 28379402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parkin Maintains Robust Pacemaking in Human Induced Pluripotent Stem Cell-Derived A9 Dopaminergic Neurons.
    Pu J; Lin L; Jiang H; Hu Z; Li H; Yan Z; Zhang B; Feng J
    Mov Disord; 2023 Jul; 38(7):1273-1281. PubMed ID: 37166002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson's disease-like motor dysfunction.
    Suda Y; Kuzumaki N; Sone T; Narita M; Tanaka K; Hamada Y; Iwasawa C; Shibasaki M; Maekawa A; Matsuo M; Akamatsu W; Hattori N; Okano H; Narita M
    Mol Brain; 2018 Feb; 11(1):6. PubMed ID: 29458391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with PARK2 mutation.
    Okarmus J; Bogetofte H; Schmidt SI; Ryding M; García-López S; Ryan BJ; Martínez-Serrano A; Hyttel P; Meyer M
    Sci Rep; 2020 Jun; 10(1):10278. PubMed ID: 32581291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of a PARK2 homozygous knockout induced pluripotent stem cell line (GIBHi002-A-1) with two common isoforms abolished.
    Zhang M; Ibañez DP; Fan W; Liu H; Zhong X; Wang X; Li Y; Md Abdul M; Li W; Li Y; Ward C; Chen S; Wang D; Qin B; Esteban MA; Zhao P; Luo Z
    Stem Cell Res; 2019 Dec; 41():101602. PubMed ID: 31698191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations.
    Momcilovic O; Sivapatham R; Oron TR; Meyer M; Mooney S; Rao MS; Zeng X
    PLoS One; 2016; 11(5):e0154890. PubMed ID: 27191603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parkinson's disease in a dish - Using stem cells as a molecular tool.
    Badger JL; Cordero-Llana O; Hartfield EM; Wade-Martins R
    Neuropharmacology; 2014 Jan; 76 Pt A():88-96. PubMed ID: 24035919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of Parkin in the Neuronal Progenitor Cells from a Patient with Parkinson's Disease Shifts the Transcriptome Towards the Normal State.
    Lebedeva O; Poberezhniy D; Novosadova E; Gerasimova T; Novosadova L; Arsenyeva E; Stepanenko E; Shimchenko D; Volovikov E; Anufrieva K; Illarioshkin S; Lagarkova M; Grivennikov I; Tarantul V; Nenasheva V
    Mol Neurobiol; 2023 Jun; 60(6):3522-3533. PubMed ID: 36884134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.
    Chung SY; Kishinevsky S; Mazzulli JR; Graziotto J; Mrejeru A; Mosharov EV; Puspita L; Valiulahi P; Sulzer D; Milner TA; Taldone T; Krainc D; Studer L; Shim JW
    Stem Cell Reports; 2016 Oct; 7(4):664-677. PubMed ID: 27641647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parkin deficiency exacerbate ethanol-induced dopaminergic neurodegeneration by P38 pathway dependent inhibition of autophagy and mitochondrial function.
    Hwang CJ; Kim YE; Son DJ; Park MH; Choi DY; Park PH; Hellström M; Han SB; Oh KW; Park EK; Hong JT
    Redox Biol; 2017 Apr; 11():456-468. PubMed ID: 28086194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.