These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38309166)
21. New insights into long-lasting Cr(VI) removal from groundwater using in situ biosulfidated zero-valent iron with sulfate-reducing bacteria. Xu H; Qin C; Zhang H; Zhao Y J Environ Manage; 2024 Mar; 355():120488. PubMed ID: 38457892 [TBL] [Abstract][Full Text] [Related]
22. Improved Electron Efficiency of Zero-Valent Iron towards Cr(VI) Reduction after Sequestering in Al Wang C; Wang S; Song C; Liu H; Yang J Int J Environ Res Public Health; 2022 Jul; 19(14):. PubMed ID: 35886218 [TBL] [Abstract][Full Text] [Related]
23. Electron donation of Fe-Mn biochar for chromium(VI) immobilization: Key roles of embedded zero-valent iron clusters within iron-manganese oxide. Xu Z; Sun M; Xu X; Cao X; Ippolito JA; Mohanty SK; Ni BJ; Xu S; Tsang DCW J Hazard Mater; 2023 Aug; 456():131632. PubMed ID: 37210785 [TBL] [Abstract][Full Text] [Related]
24. An efficient, economical, and easy mass production biochar supported zero-valent iron composite derived from direct-reduction natural goethite for Cu(II) and Cr(VI) remove. Cai M; Zeng J; Chen Y; He P; Chen F; Wang X; Liang J; Gu C; Huang D; Zhang K; Gan M; Zhu J Chemosphere; 2021 Dec; 285():131539. PubMed ID: 34329142 [TBL] [Abstract][Full Text] [Related]
25. Screening for the action mechanisms of Fe and Ni in the reduction of Cr(VI) by Fe/Ni nanoparticles. Ruan X; Liu H; Ning X; Zhao D; Fan X Sci Total Environ; 2020 May; 715():136822. PubMed ID: 32023522 [TBL] [Abstract][Full Text] [Related]
26. Enhanced Fe(ii)/Fe(iii) cycle by boron enabled efficient Cr(vi) removal with microscale zero-valent iron. Shen W; Gao Y; Liu Z; Zhang X; Quan F; Peng X; Wang X; Li J; Qin Z; He Y; Li H RSC Adv; 2024 Feb; 14(10):6719-6726. PubMed ID: 38405066 [TBL] [Abstract][Full Text] [Related]
27. Selective removal of Cr(VI) by tannic acid and polyethyleneimine modified zero-valent iron particles with air stability. Wang M; Chen Y; Zhang Y; Zhao K; Feng X J Hazard Mater; 2023 Sep; 458():132018. PubMed ID: 37441863 [TBL] [Abstract][Full Text] [Related]
28. Enhanced remediation of Cr(VI)-contaminated groundwater by coupling electrokinetics with ZVI/Fe Cao R; Liu S; Yang X; Wang C; Wang Y; Wang W; Pi Y J Environ Sci (China); 2022 Feb; 112():280-290. PubMed ID: 34955212 [TBL] [Abstract][Full Text] [Related]
29. Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism. Yoon IH; Bang S; Kim KW; Kim MG; Park SY; Choi WK Environ Sci Pollut Res Int; 2016 Jan; 23(2):1081-90. PubMed ID: 25943509 [TBL] [Abstract][Full Text] [Related]
30. Oxyanion-modified zero valent iron with excellent pollutant removal performance. Gong L; Zhang L Chem Commun (Camb); 2023 Feb; 59(15):2081-2089. PubMed ID: 36723230 [TBL] [Abstract][Full Text] [Related]
31. Regulating the FeS Qu G; Zhang Y; Duan Z; Li K; Xu C Water Res; 2024 Jan; 248():120860. PubMed ID: 37984041 [TBL] [Abstract][Full Text] [Related]
33. Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron. Weng CH; Lin YT; Lin TY; Kao CM J Hazard Mater; 2007 Oct; 149(2):292-302. PubMed ID: 17485164 [TBL] [Abstract][Full Text] [Related]
34. Fabrication of a low-cost adsorbent supported zero-valent iron by using red mud for removing Pb(ii) and Cr(vi) from aqueous solutions. Du Y; Dai M; Cao J; Peng C RSC Adv; 2019 Oct; 9(57):33486-33496. PubMed ID: 35529152 [TBL] [Abstract][Full Text] [Related]
35. Tannic acid modified microscale zero valent iron (TA-mZVI) with enhanced anti-passivation capability for Cr(VI) removal. Zhang X; Wang Y; Li T; Wang H Chemosphere; 2024 Feb; 350():141034. PubMed ID: 38147926 [TBL] [Abstract][Full Text] [Related]
36. Enhanced removal of selenate from mining effluent by H Wu B; Jia H; Yang Z; Shan C; Weng J; Xu Z; Pan B Water Sci Technol; 2018 Dec; 78(11):2404-2413. PubMed ID: 30699092 [TBL] [Abstract][Full Text] [Related]
37. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms. Tang C; Huang YH; Zeng H; Zhang Z Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108 [TBL] [Abstract][Full Text] [Related]
38. Influence of Leifsonia sp. on U(VI) removal efficiency and the Fe-U precipitates by zero-valent iron. Xie S; Xiao X; Tan W; Lv J; Deng Q; Fang Q Environ Sci Pollut Res Int; 2020 Feb; 27(5):5584-5594. PubMed ID: 31853852 [TBL] [Abstract][Full Text] [Related]
39. Pyrolysis temperature and feedstock affected Cr(VI) removal capacity of sulfidated zerovalent iron: Importance of surface area and electrical conductivity. Zhao C; Liu L; Yang X; Liu C; Wang B; Mao X; Zhang J; Shi J; Yin W; Wang X; Wang S Chemosphere; 2022 Jun; 296():133927. PubMed ID: 35167834 [TBL] [Abstract][Full Text] [Related]
40. Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H Shan C; Chen J; Yang Z; Jia H; Guan X; Zhang W; Pan B Water Res; 2018 Apr; 133():173-181. PubMed ID: 29407699 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]