These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38309183)
1. Pyramiding D-lactate dehydrogenase with the glyoxalase pathway enhances abiotic stress tolerance in plants. Alam NB; Jain M; Mustafiz A Plant Physiol Biochem; 2024 Feb; 207():108391. PubMed ID: 38309183 [TBL] [Abstract][Full Text] [Related]
2. From methylglyoxal to pyruvate: a genome-wide study for the identification of glyoxalases and D-lactate dehydrogenases in Sorghum bicolor. Bhowal B; Singla-Pareek SL; Sopory SK; Kaur C BMC Genomics; 2020 Feb; 21(1):145. PubMed ID: 32041545 [TBL] [Abstract][Full Text] [Related]
3. GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance. Jain M; Nagar P; Sharma A; Batth R; Aggarwal S; Kumari S; Mustafiz A Sci Rep; 2018 Apr; 8(1):5451. PubMed ID: 29615695 [TBL] [Abstract][Full Text] [Related]
4. Genomic identification, characterization, and stress-induced expression profiling of glyoxalase and D-lactate dehydrogenase gene families in Capsicum annuum. Arman MS; Bhuya AR; Shuvo MRK; Rabbi MA; Ghosh A BMC Plant Biol; 2024 Oct; 24(1):990. PubMed ID: 39428463 [TBL] [Abstract][Full Text] [Related]
5. A glutathione-independent DJ-1/PfpI domain-containing tomato glyoxalaseIII2, SlGLYIII2, confers enhanced tolerance under salt and osmotic stresses. Gambhir P; Singh V; Raghuvanshi U; Parida AP; Pareek A; Roychowdhury A; Sopory SK; Kumar R; Sharma AK Plant Cell Environ; 2023 Feb; 46(2):518-548. PubMed ID: 36377315 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide analysis of glyoxalase-like gene families in grape (Vitis vinifera L.) and their expression profiling in response to downy mildew infection. Li T; Cheng X; Wang Y; Yin X; Li Z; Liu R; Liu G; Wang Y; Xu Y BMC Genomics; 2019 May; 20(1):362. PubMed ID: 31072302 [TBL] [Abstract][Full Text] [Related]
8. Zn2+ dependent glyoxalase I plays the major role in methylglyoxal detoxification and salinity stress tolerance in plants. Batth R; Jain M; Kumar A; Nagar P; Kumari S; Mustafiz A PLoS One; 2020; 15(5):e0233493. PubMed ID: 32453778 [TBL] [Abstract][Full Text] [Related]
9. Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes. Kaur C; Sharma S; Hasan MR; Pareek A; Singla-Pareek SL; Sopory SK Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28358304 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Alvarez Viveros MF; Inostroza-Blancheteau C; Timmermann T; González M; Arce-Johnson P Mol Biol Rep; 2013 Apr; 40(4):3281-90. PubMed ID: 23283739 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide analysis and expression profiling of glyoxalase gene families in soybean (Glycine max) indicate their development and abiotic stress specific response. Ghosh A; Islam T BMC Plant Biol; 2016 Apr; 16():87. PubMed ID: 27083416 [TBL] [Abstract][Full Text] [Related]
13. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants. Hasanuzzaman M; Nahar K; Hossain MS; Mahmud JA; Rahman A; Inafuku M; Oku H; Fujita M Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117669 [TBL] [Abstract][Full Text] [Related]
14. Alr2321, a multiple stress inducible glyoxalase I of Anabaena sp. PCC7120 detoxifies methylglyoxal and reactive species oxygen. Rai S; Rai R; Singh PK; Rai LC Aquat Toxicol; 2019 Sep; 214():105238. PubMed ID: 31301544 [TBL] [Abstract][Full Text] [Related]
15. A nuclear-localized rice glyoxalase I enzyme, OsGLYI-8, functions in the detoxification of methylglyoxal in the nucleus. Kaur C; Tripathi AK; Nutan KK; Sharma S; Ghosh A; Tripathi JK; Pareek A; Singla-Pareek SL; Sopory SK Plant J; 2017 Feb; 89(3):565-576. PubMed ID: 27797431 [TBL] [Abstract][Full Text] [Related]
16. Glyoxalase III enhances salinity tolerance through reactive oxygen species scavenging and reduced glycation. Ghosh A; Mustafiz A; Pareek A; Sopory SK; Singla-Pareek SL Physiol Plant; 2022 May; 174(3):e13693. PubMed ID: 35483971 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. Mustafiz A; Sahoo KK; Singla-Pareek SL; Sopory SK Methods Mol Biol; 2010; 639():95-118. PubMed ID: 20387042 [TBL] [Abstract][Full Text] [Related]
18. Regulation of antioxidant defense and glyoxalase systems in cyanobacteria. Rai R; Singh S; Rai KK; Raj A; Sriwastaw S; Rai LC Plant Physiol Biochem; 2021 Nov; 168():353-372. PubMed ID: 34700048 [TBL] [Abstract][Full Text] [Related]
19. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. Wu C; Ma C; Pan Y; Gong S; Zhao C; Chen S; Li H J Plant Res; 2013 May; 126(3):415-25. PubMed ID: 23203352 [TBL] [Abstract][Full Text] [Related]
20. OsGLYI3, a glyoxalase gene expressed in rice seed, contributes to seed longevity and salt stress tolerance. Liu S; Liu W; Lai J; Liu Q; Zhang W; Chen Z; Gao J; Song S; Liu J; Xiao Y Plant Physiol Biochem; 2022 Jul; 183():85-95. PubMed ID: 35569169 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]