These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 38309334)
1. Soil warming affects sap flow and stomatal gas exchange through altering functional traits in a subtropical forest. Hu W; Zhao P Sci Total Environ; 2024 Mar; 918():170581. PubMed ID: 38309334 [TBL] [Abstract][Full Text] [Related]
2. Nocturnal warming accelerates drought-induced seedling mortality of two evergreen tree species. Lu R; Du Y; Sun H; Xu X; Yan L; Xia J Tree Physiol; 2022 Jun; 42(6):1164-1176. PubMed ID: 34919711 [TBL] [Abstract][Full Text] [Related]
3. Long-term effects of 7-year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species. Wu T; Tissue DT; Li X; Liu S; Chu G; Zhou G; Li Y; Zheng M; Meng Z; Liu J Glob Chang Biol; 2020 Dec; 26(12):7144-7157. PubMed ID: 32939936 [TBL] [Abstract][Full Text] [Related]
4. Differential Responses of Stomata and Photosynthesis to Elevated Temperature in Two Co-occurring Subtropical Forest Tree Species. Wu G; Liu H; Hua L; Luo Q; Lin Y; He P; Feng S; Liu J; Ye Q Front Plant Sci; 2018; 9():467. PubMed ID: 29740458 [TBL] [Abstract][Full Text] [Related]
5. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Eller CB; Burgess SS; Oliveira RS Tree Physiol; 2015 Apr; 35(4):387-99. PubMed ID: 25716877 [TBL] [Abstract][Full Text] [Related]
6. Plant photosynthetic overcompensation under nocturnal warming: lack of evidence in subtropical evergreen trees. Du Y; Lu R; Sun H; Cui E; Yan L; Xia J Ann Bot; 2022 Jul; 130(1):109-119. PubMed ID: 35690359 [TBL] [Abstract][Full Text] [Related]
7. Leaf stomatal configuration and photosynthetic traits jointly affect leaf water use efficiency in forests along climate gradients. Pan S; Wang X; Yan Z; Wu J; Guo L; Peng Z; Wu Y; Li J; Wang B; Su Y; Liu L New Phytol; 2024 Nov; 244(4):1250-1262. PubMed ID: 39223910 [TBL] [Abstract][Full Text] [Related]
8. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Liu C; Li Y; Xu L; Chen Z; He N Sci Rep; 2019 Apr; 9(1):5803. PubMed ID: 30967600 [TBL] [Abstract][Full Text] [Related]
9. Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. Bucci SJ; Scholz FG; Goldstein G; Meinzer FC; Franco AC; Campanello PI; Villalobos-Vega R; Bustamante M; Miralles-Wilhelm F Plant Cell Environ; 2006 Dec; 29(12):2153-67. PubMed ID: 17081249 [TBL] [Abstract][Full Text] [Related]
10. Regulation of transpirational water loss in Quercus suber trees in a Mediterranean-type ecosystem. Otieno DO; Schmidt MW; Kurz-Besson C; Lobo Do Vale R; Pereira JS; Tenhunen JD Tree Physiol; 2007 Aug; 27(8):1179-87. PubMed ID: 17472943 [TBL] [Abstract][Full Text] [Related]
11. Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Bucci SJ; Goldstein G; Meinzer FC; Scholz FG; Franco AC; Bustamante M Tree Physiol; 2004 Aug; 24(8):891-9. PubMed ID: 15172839 [TBL] [Abstract][Full Text] [Related]
12. Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Fisher RA; Williams M; Do Vale RL; Da Costa AL; Meir P Plant Cell Environ; 2006 Feb; 29(2):151-65. PubMed ID: 17080631 [TBL] [Abstract][Full Text] [Related]
13. The ecological and functional correlates of nocturnal transpiration. Marks CO; Lechowicz MJ Tree Physiol; 2007 Apr; 27(4):577-84. PubMed ID: 17241999 [TBL] [Abstract][Full Text] [Related]
14. Linking leaf and tree water use with an individual-tree model. Medlyn BE; Pepper DA; O'Grady AP; Keith H Tree Physiol; 2007 Dec; 27(12):1687-99. PubMed ID: 17938100 [TBL] [Abstract][Full Text] [Related]
15. Variations in leaf and stem traits across two elevations in subtropical forests. Zhu L; Zhang Y; Ye H; Li Y; Hu W; Du J; Zhao P Funct Plant Biol; 2022 Mar; 49(4):319-332. PubMed ID: 35157825 [TBL] [Abstract][Full Text] [Related]
16. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem. Renninger HJ; Carlo N; Clark KL; Schäfer KV Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856 [TBL] [Abstract][Full Text] [Related]
17. Leaf morpho-anatomical adjustments in a Quercus pubescens forest after 10 years of partial rain exclusion in the field. Laoué J; Gea-Izquierdo G; Dupouyet S; Conde M; Fernandez C; Ormeño E Tree Physiol; 2024 May; 44(5):. PubMed ID: 38676920 [TBL] [Abstract][Full Text] [Related]
18. Trading water for carbon in the future: Effects of elevated CO Mueller KE; Ocheltree TW; Kray JA; Bushey JA; Blumenthal DM; Williams DG; Pendall E Glob Chang Biol; 2022 Oct; 28(20):5991-6001. PubMed ID: 35751572 [TBL] [Abstract][Full Text] [Related]
19. Nighttime transpiration in woody plants from contrasting ecosystems. Dawson TE; Burgess SS; Tu KP; Oliveira RS; Santiago LS; Fisher JB; Simonin KA; Ambrose AR Tree Physiol; 2007 Apr; 27(4):561-75. PubMed ID: 17241998 [TBL] [Abstract][Full Text] [Related]
20. Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Motzer T; Munz N; Küppers M; Schmitt D; Anhuf D Tree Physiol; 2005 Oct; 25(10):1283-93. PubMed ID: 16076777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]