BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38309378)

  • 1. Compressed sensing with deep learning reconstruction: Improving capability of gadolinium-EOB-enhanced 3D T1WI.
    Nagata H; Ohno Y; Yoshikawa T; Yamamoto K; Shinohara M; Ikedo M; Yui M; Matsuyama T; Takahashi T; Bando S; Furuta M; Ueda T; Ozawa Y; Toyama H
    Magn Reson Imaging; 2024 May; 108():67-76. PubMed ID: 38309378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR imaging for shoulder diseases: Effect of compressed sensing and deep learning reconstruction on examination time and imaging quality compared with that of parallel imaging.
    Obama Y; Ohno Y; Yamamoto K; Ikedo M; Yui M; Hanamatsu S; Ueda T; Ikeda H; Murayama K; Toyama H
    Magn Reson Imaging; 2022 Dec; 94():56-63. PubMed ID: 35934207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of utility of deep learning reconstruction on 3D MRCPs obtained with three different k-space data acquisitions in patients with IPMN.
    Matsuyama T; Ohno Y; Yamamoto K; Ikedo M; Yui M; Furuta M; Fujisawa R; Hanamatsu S; Nagata H; Ueda T; Ikeda H; Takeda S; Iwase A; Fukuba T; Akamatsu H; Hanaoka R; Kato R; Murayama K; Toyama H
    Eur Radiol; 2022 Oct; 32(10):6658-6667. PubMed ID: 35687136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved image quality in contrast-enhanced 3D-T1 weighted sequence by compressed sensing-based deep-learning reconstruction for the evaluation of head and neck.
    Fujima N; Nakagawa J; Ikebe Y; Kameda H; Harada T; Shimizu Y; Tsushima N; Kano S; Homma A; Kwon J; Yoneyama M; Kudo K
    Magn Reson Imaging; 2024 May; 108():111-115. PubMed ID: 38340971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breath-hold High-resolution T1-weighted Gradient Echo Liver MR Imaging with Compressed Sensing Obtained during the Gadoxetic Acid-enhanced Hepatobiliary Phase: Image Quality and Lesion Visibility Compared with a Standard T1-weighted Sequence.
    Ihara K; Onoda H; Tanabe M; Iida E; Ueda T; Kobayashi T; Higashi M; Nickel MD; Imai H; Ito K
    Magn Reson Med Sci; 2024 Apr; 23(2):146-152. PubMed ID: 36740257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Reconstruction to Improve the Quality of MR Imaging: Evaluating the Best Sequence for T-category Assessment in Non-small Cell Lung Cancer Patients.
    Takenaka D; Ozawa Y; Yamamoto K; Shinohara M; Ikedo M; Yui M; Oshima Y; Hamabuchi N; Nagata H; Ueda T; Ikeda H; Iwase A; Yoshikawa T; Toyama H; Ohno Y
    Magn Reson Med Sci; 2023 Sep; ():. PubMed ID: 37661425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic value of contrast-enhanced fluid-attenuated inversion-recovery MRI for intracranial tumors in comparison with post-contrast T1W spin-echo MRI.
    Zhou ZR; Shen TZ; Chen XR; Peng WJ
    Chin Med J (Engl); 2006 Mar; 119(6):467-73. PubMed ID: 16584644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multichannel three-dimensional fully convolutional residual network-based focal liver lesion detection and classification in Gd-EOB-DTPA-enhanced MRI.
    Takenaga T; Hanaoka S; Nomura Y; Nakao T; Shibata H; Miki S; Yoshikawa T; Hayashi N; Abe O
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1527-1536. PubMed ID: 34075548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.
    Yoon JH; Yu MH; Chang W; Park JY; Nickel MD; Son Y; Kiefer B; Lee JM
    Invest Radiol; 2017 Oct; 52(10):596-604. PubMed ID: 28492418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressed Sensitivity Encoding Artificial Intelligence Accelerates Brain Metastasis Imaging by Optimizing Image Quality and Reducing Scan Time.
    Wang M; Ma Y; Li L; Pan X; Wen Y; Qiu Y; Guo D; Zhu Y; Lian J; Tong D
    AJNR Am J Neuroradiol; 2024 Apr; 45(4):444-452. PubMed ID: 38485196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of deep learning-based reconstruction for improvement of image quality and liver tumor detectability in the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging.
    Takayama Y; Sato K; Tanaka S; Murayama R; Jingu R; Yoshimitsu K
    Abdom Radiol (NY); 2024 May; ():. PubMed ID: 38755452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and characterization of focal liver lesions: a Japanese phase III, multicenter comparison between gadoxetic acid disodium-enhanced magnetic resonance imaging and contrast-enhanced computed tomography predominantly in patients with hepatocellular carcinoma and chronic liver disease.
    Ichikawa T; Saito K; Yoshioka N; Tanimoto A; Gokan T; Takehara Y; Kamura T; Gabata T; Murakami T; Ito K; Hirohashi S; Nishie A; Saito Y; Onaya H; Kuwatsuru R; Morimoto A; Ueda K; Kurauchi M; Breuer J
    Invest Radiol; 2010 Mar; 45(3):133-41. PubMed ID: 20098330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Value of Gd-EOB-DTPA-Enhanced MRI and Diffusion-Weighted Imaging in Detecting Residual Hepatocellular Carcinoma After Drug-Eluting Bead Transarterial Chemoembolization.
    Liu HF; Xu YS; Liu Z; Che KY; Sheng Y; Ding JL; Zhang JG; Lei JQ; Xing W
    Acad Radiol; 2021 Jun; 28(6):790-798. PubMed ID: 32414638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Resolution Magnetic Resonance Imaging Using Compressed Sensing for Intracranial and Extracranial Arteries: Comparison with Conventional Parallel Imaging.
    Suh CH; Jung SC; Lee HB; Cho SJ
    Korean J Radiol; 2019 Mar; 20(3):487-497. PubMed ID: 30799580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of hyperintense nodules on T1-weighted liver magnetic resonance imaging: comparison of Ferucarbotran-enhanced MRI with accumulation-phase FS-T1WI and gadolinium-enhanced MRI.
    Chou CT; Chen RC; Chen WT; Lii JM
    J Chin Med Assoc; 2011 Feb; 74(2):62-8. PubMed ID: 21354082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrapatient Comparison of the Hepatobiliary Phase of Gd-BOPTA and Gd-EOB-DTPA in the Differentiation of Hepatocellular Adenoma From Focal Nodular Hyperplasia.
    Vanhooymissen IJSML; Thomeer MG; Braun LMM; Gest B; van Koeverden S; Willemssen FE; Hunink M; De Man RA; Ijzermans JN; Dwarkasing RS
    J Magn Reson Imaging; 2019 Mar; 49(3):700-710. PubMed ID: 30252977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. View-Sharing Artifact Reduction With Retrospective Compressed Sensing Reconstruction in the Context of Contrast-Enhanced Liver MRI for Hepatocellular Carcinoma (HCC) Screening.
    Shaikh J; Stoddard PB; Levine EG; Roh AT; Saranathan M; Chang ST; Muelly MC; Hargreaves BA; Vasanawala SS; Loening AM
    J Magn Reson Imaging; 2019 Apr; 49(4):984-993. PubMed ID: 30390358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Acceleration Three-Dimensional T1-Weighted Dual Echo Dixon Hepatobiliary Phase Imaging Using Compressed Sensing-Sensitivity Encoding: Comparison of Image Quality and Solid Lesion Detectability with the Standard T1-Weighted Sequence.
    Nam JG; Lee JM; Lee SM; Kang HJ; Lee ES; Hur BY; Yoon JH; Kim E; Doneva M
    Korean J Radiol; 2019 Mar; 20(3):438-448. PubMed ID: 30799575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The value of Gd-EOB-DTPA-enhanced MR imaging in characterizing cirrhotic nodules with atypical enhancement on Gd-DTPA-enhanced MR images.
    Wang YC; Chou CT; Lin CP; Chen YL; Chen YF; Chen RC
    PLoS One; 2017; 12(3):e0174594. PubMed ID: 28355258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressed sensing for breath-hold high-resolution hepatobiliary phase imaging: image noise, artifact, biliary anatomy evaluation, and focal lesion detection in comparison with parallel imaging.
    Choi MH; Kim B; Han D; Lee YJ
    Abdom Radiol (NY); 2022 Jan; 47(1):133-142. PubMed ID: 34591152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.