These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38309619)

  • 1. Evaluation of enzyme-constrained genome-scale model through metabolic engineering of anaerobic co-production of 2,3-butanediol and glycerol by Saccharomyces cerevisiae.
    Sjöberg G; Reķēna A; Fornstad M; Lahtvee PJ; van Maris AJA
    Metab Eng; 2024 Mar; 82():49-59. PubMed ID: 38309619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing.
    Kim S; Hahn JS
    Metab Eng; 2015 Sep; 31():94-101. PubMed ID: 26226562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering.
    Ng CY; Jung MY; Lee J; Oh MK
    Microb Cell Fact; 2012 May; 11():68. PubMed ID: 22640729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.
    Ehsani M; Fernández MR; Biosca JA; Julien A; Dequin S
    Appl Environ Microbiol; 2009 May; 75(10):3196-205. PubMed ID: 19329666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and stable production of 2,3-butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor.
    Yamada R; Nishikawa R; Wakita K; Ogino H
    J Ind Microbiol Biotechnol; 2018 May; 45(5):305-311. PubMed ID: 29605870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an industrial yeast strain for efficient production of 2,3-butanediol.
    Huo G; Foulquié-Moreno MR; Thevelein JM
    Microb Cell Fact; 2022 Sep; 21(1):199. PubMed ID: 36175998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved 2,3-Butanediol Production Rate of Metabolically Engineered
    Sugimura M; Seike T; Okahashi N; Izumi Y; Bamba T; Ishii J; Matsuda F
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003568
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.
    Guadalupe-Medina V; Metz B; Oud B; van Der Graaf CM; Mans R; Pronk JT; van Maris AJ
    Microb Biotechnol; 2014 Jan; 7(1):44-53. PubMed ID: 24004455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 100 Years Later, What Is New in Glycerol Bioproduction?
    Semkiv MV; Ruchala J; Dmytruk KV; Sibirny AA
    Trends Biotechnol; 2020 Aug; 38(8):907-916. PubMed ID: 32584768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.
    Semkiv MV; Dmytruk KV; Abbas CA; Sibirny AA
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4403-4416. PubMed ID: 28280870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim SJ; Sim HJ; Kim JW; Lee YG; Park YC; Seo JH
    Bioresour Technol; 2017 Dec; 245(Pt B):1551-1557. PubMed ID: 28651874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH
    J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae.
    Klimacek M; Kirl E; Krahulec S; Longus K; Novy V; Nidetzky B
    Microb Cell Fact; 2014 Mar; 13(1):37. PubMed ID: 24606998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of an enzyme-constrained metabolic network model for Myceliophthora thermophila using machine learning-based k
    Wang Y; Mao Z; Dong J; Zhang P; Gao Q; Liu D; Tian C; Ma H
    Microb Cell Fact; 2024 May; 23(1):138. PubMed ID: 38750569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae.
    Björkqvist S; Ansell R; Adler L; Lidén G
    Appl Environ Microbiol; 1997 Jan; 63(1):128-32. PubMed ID: 8979347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics and product formation by Saccharomyces cerevisiae grown in anaerobic chemostats under nitrogen limitation.
    Lidén G; Persson A; Gustafsson L; Niklasson C
    Appl Microbiol Biotechnol; 1995 Nov; 43(6):1034-8. PubMed ID: 8590653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose.
    Choi EJ; Kim JW; Kim SJ; Seo SO; Lane S; Park YC; Jin YS; Seo JH
    Biotechnol J; 2016 Nov; 11(11):1424-1432. PubMed ID: 27528190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction.
    Ida Y; Hirasawa T; Furusawa C; Shimizu H
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4811-9. PubMed ID: 23435983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.