These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38309913)

  • 1. Regulation of the Ice Ⅰ to Ice III high pressure phase transition meta-stability in milk and its bactericidal effects.
    Xiao T; Meenu M; Ramaswamy HS; Zhang S; Ren J; Hu L; Zhu S; Yu Y
    Food Res Int; 2024 Feb; 178():113962. PubMed ID: 38309913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of
    Xiao T; Li Y; Hu L; Nie P; Ramaswamy HS; Yu Y
    Foods; 2022 Apr; 11(8):. PubMed ID: 35454669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitation of metastable ice Ⅰ - ice III phase transition of liquid foods at high-pressure sub-zero temperature by perturbation.
    Xiao T; Meenu M; Hu L; Zhu S; Ramaswamy HS; Yu Y
    Food Res Int; 2023 Jul; 169():112837. PubMed ID: 37254411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitating high pressure phase-transition research and kinetics studies at subzero temperatures using self-cooling laboratory units.
    Li T; Xiao T; Zheng Z; Li Y; Zhu S; Ramaswamy HS; Hu L; Yu Y
    Food Res Int; 2022 Jan; 151():110857. PubMed ID: 34980393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of foodborne pathogens in milk using dynamic high pressure.
    Vachon JF; Kheadr EE; Giasson J; Paquin P; Fliss I
    J Food Prot; 2002 Feb; 65(2):345-52. PubMed ID: 11848566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of high-pressure-induced ice I-to-ice III phase transitions on inactivation of Listeria innocua in frozen suspension.
    Luscher C; Balasa A; Fröhling A; Ananta E; Knorr D
    Appl Environ Microbiol; 2004 Jul; 70(7):4021-9. PubMed ID: 15240278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Low-Temperature-High-Pressure Treatment on the Reduction of
    Li Y; Zheng Z; Zhu S; Ramaswamy HS; Yu Y
    Foods; 2020 Nov; 9(12):. PubMed ID: 33255959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous flow nonthermal CO2 processing: the lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk.
    Werner BG; Hotchkiss JH
    J Dairy Sci; 2006 Mar; 89(3):872-81. PubMed ID: 16507680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of high hydrostatic pressure on Escherichia coli and Pseudomonas fluorescens strains in ovine milk.
    Gervilla R; Felipe X; Ferragut V; Guamis B
    J Dairy Sci; 1997 Oct; 80(10):2297-303. PubMed ID: 9361201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frozen-Phase High-Pressure Destruction Kinetics of
    Wang C; Liu H; Yu Y; Qiao Y
    Foods; 2022 Jun; 11(12):. PubMed ID: 35741999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a surrogate strain cocktail to evaluate bactericidal effects of pressure on verotoxigenic Escherichia coli.
    Garcia-Hernandez R; McMullen L; Gänzle MG
    Int J Food Microbiol; 2015 Jul; 205():16-22. PubMed ID: 25866907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation. A comparison with continuous short-time thermal treatments.
    Picart L; Thiebaud M; René M; Pierre Guiraud J; Cheftel JC; Dumay E
    J Dairy Res; 2006 Nov; 73(4):454-63. PubMed ID: 16834813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of bacterial pathogens in human milk by high-pressure processing.
    Viazis S; Farkas BE; Jaykus LA
    J Food Prot; 2008 Jan; 71(1):109-18. PubMed ID: 18236670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of mild-heat treatment following high-pressure processing to prevent recovery of pressure-injured Listeria monocytogenes in milk.
    Koseki S; Mizuno Y; Yamamoto K
    Food Microbiol; 2008 Apr; 25(2):288-93. PubMed ID: 18206771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pre- or post-processing storage conditions on high-hydrostatic pressure inactivation of Vibrio parahaemolyticus and V. vulnificus in oysters.
    Ye M; Huang Y; Gurtler JB; Niemira BA; Sites JE; Chen H
    Int J Food Microbiol; 2013 May; 163(2-3):146-52. PubMed ID: 23545264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of hydrostatic pressure for inactivation of microbial contaminants in cheese.
    O'Reilly CE; O'Connor PM; Kelly AL; Beresford TP; Murphy PM
    Appl Environ Microbiol; 2000 Nov; 66(11):4890-6. PubMed ID: 11055940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic and antagonistic effects of combined subzero temperature and high pressure on inactivation of Escherichia coli.
    Moussa M; Perrier-Cornet JM; Gervais P
    Appl Environ Microbiol; 2006 Jan; 72(1):150-6. PubMed ID: 16391037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157:H7 in raw-milk cheese.
    Rodriguez E; Arques JL; Nuñez M; Gaya P; Medina M
    Appl Environ Microbiol; 2005 Jul; 71(7):3399-404. PubMed ID: 16000741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.
    Van Opstal I; Bagamboula CF; Vanmuysen SC; Wuytack EY; Michiels CW
    Int J Food Microbiol; 2004 Apr; 92(2):227-34. PubMed ID: 15109800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk.
    Erkmen O
    Int J Food Microbiol; 2001 Apr; 65(1-2):131-5. PubMed ID: 11322696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.