These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38310061)

  • 1. Effective reduction on flame soot via plasma coupled with carbon dioxide.
    Qi D; Chen M; Yang K; Li T; Ying Y; Liu D
    J Hazard Mater; 2024 Mar; 466():133669. PubMed ID: 38310061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ammonia on morphological characteristics and nanostructure of soot in the combustion of diesel surrogate fuels.
    Zhang K; Xu Y; Li Y; Liu Y; Wang B; Wang H; Ma J; Cheng X
    J Hazard Mater; 2023 Mar; 445():130645. PubMed ID: 37056027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructure Transition of Young Soot Aggregates to Mature Soot Aggregates in Diluted Diffusion Flames.
    Davis J; Molnar E; Novosselov I
    Carbon N Y; 2020 Apr; 159():255-265. PubMed ID: 32863394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of the effect of CO
    An X; Cai W; Yang Y; Zheng S; Lu Q
    RSC Adv; 2023 Mar; 13(12):8173-8181. PubMed ID: 36922945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of CO
    Liu Y; Xue Q; Zuo H; Yang F; Peng X; Wang J
    ACS Omega; 2021 Jun; 6(24):15651-15662. PubMed ID: 34179609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy, mobility size and radiative emissions data for soot formed at increasing temperature and equivalence ratio in flames hotter than conventional combustion applications.
    Dasappa S; Camacho J
    Data Brief; 2021 Jun; 36():107064. PubMed ID: 34026968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soot reduction by addition of dimethyl carbonate in normal and inverse ethylene diffusion flames: Nanostructural evidence.
    Paladpokkrong C; Liu D; Ying Y; Wang W; Zhang R
    J Environ Sci (China); 2018 Oct; 72():107-117. PubMed ID: 30244737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soot Morphology and Nanostructure Differences between Chinese Aviation Kerosene and Algae-Based Aviation Biofuel in Free Jet Laminar Diffusion Flames.
    Chang D; Li J; Yang Y; Gan Z
    ACS Omega; 2022 Apr; 7(14):11560-11569. PubMed ID: 35449979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and numerical research on the effects of pressure and CO
    Zhou Y; Zhang P; Wang S; Cai J; Xi J
    RSC Adv; 2024 Sep; 14(41):30260-30271. PubMed ID: 39315025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon dioxide adsorbents from flame-made diesel soot nanoparticles.
    Guerrero Peña GDJ; Reddy KSK; Varghese AM; Prabhu A; Dabbawala AA; Polychronopoulou K; Baker MA; Anjum D; Das G; Aubry C; Hassan Ali MI; Karanikolos GN; Raj A; Elkadi M
    Sci Total Environ; 2023 Feb; 859(Pt 1):160140. PubMed ID: 36379328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and Evolution of Soot in Ethylene Inverse Diffusion Flames in Ozone Atmosphere.
    Ying Y; Liu D
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OH-Planar Laser-Induced Fluorescence Measurements in Laminar Diffusion Flames of
    Huang Y; Du H; Wang W; Shi D; Wu Y; Li B; Zhou L
    ACS Omega; 2021 Sep; 6(38):24515-24525. PubMed ID: 34604633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on Soot and NOx Formation Characteristics in Ammonia/Ethylene Laminar Co-Flow Diffusion Flame.
    Li S; Liu Q; Zhang F; Sun J; Wang Y; Gu M
    Molecules; 2024 Aug; 29(17):. PubMed ID: 39274850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soot Morphology and Nanostructure in Complex Flame Flow Patterns via Secondary Particle Surface Growth.
    Davis J; Tiwari K; Novosselov I
    Fuel (Lond); 2019 Jun; 245():447-457. PubMed ID: 31736504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of diluent gases on sooting transition process in ethylene counterflow diffusion flames.
    Su Z; Ying Y; Chen C; Zhao R; Zhao X; Liu D
    RSC Adv; 2022 Jun; 12(28):18181-18196. PubMed ID: 35800317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames.
    Kempema NJ; Long MB
    Opt Lett; 2018 Mar; 43(5):1103-1106. PubMed ID: 29489790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candle flame soot sizing by planar time-resolved laser-induced incandescence.
    Verdugo I; Cruz JJ; Álvarez E; Reszka P; Figueira da Silva LF; Fuentes A
    Sci Rep; 2020 Jul; 10(1):11364. PubMed ID: 32647154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally induced variations in the nanostructure and reactivity of soot particles emitted from a diesel engine.
    Liu Y; Fan C; Wang X; Liu F; Chen H
    Chemosphere; 2022 Jan; 286(Pt 2):131712. PubMed ID: 34333188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-assisted soot temperature and volume fraction fields predictions in the ethylene laminar diffusion flames.
    Ren T; Zhou Y; Wang Q; Liu H; Li Z; Zhao C
    Opt Express; 2021 Jan; 29(2):1678-1693. PubMed ID: 33726377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator.
    Mueller L; Jakobi G; Orasche J; Karg E; Sklorz M; Abbaszade G; Weggler B; Jing L; Schnelle-Kreis J; Zimmermann R
    Anal Bioanal Chem; 2015 Aug; 407(20):5911-22. PubMed ID: 25711989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.