BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38310270)

  • 1. A hyperspectral deep learning attention model for predicting lettuce chlorophyll content.
    Ye Z; Tan X; Dai M; Chen X; Zhong Y; Zhang Y; Ruan Y; Kong D
    Plant Methods; 2024 Feb; 20(1):22. PubMed ID: 38310270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Chlorophyll Content of Leafy Green Vegetables from Adaxial and Abaxial Reflectance.
    Lu F; Bu Z; Lu S
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Mapping of Water-Stress Responsive Genomic Loci in Lettuce (
    Kumar P; Eriksen RL; Simko I; Mou B
    Front Genet; 2021; 12():634554. PubMed ID: 33679897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion.
    Zhang H; Ge Y; Xie X; Atefi A; Wijewardane NK; Thapa S
    Plant Methods; 2022 May; 18(1):60. PubMed ID: 35505350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images.
    Taha MF; Mao H; Wang Y; ElManawy AI; Elmasry G; Wu L; Memon MS; Niu Z; Huang T; Qiu Z
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce.
    Yu S; Fan J; Lu X; Wen W; Shao S; Guo X; Zhao C
    Front Plant Sci; 2022; 13():927832. PubMed ID: 35845657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm.
    Zhou X; Sun J; Tian Y; Yao K; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120460. PubMed ID: 34637985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperspectral inversion of mercury in reed leaves under different levels of soil mercury contamination.
    Liu W; Li M; Zhang M; Long S; Guo Z; Wang H; Li W; Wang D; Hu Y; Wei Y; Yang S
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):22935-22945. PubMed ID: 32329007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic monitoring of lettuce fresh weight by multi-modal fusion based deep learning.
    Lin Z; Fu R; Ren G; Zhong R; Ying Y; Lin T
    Front Plant Sci; 2022; 13():980581. PubMed ID: 36092436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral Reflectance Reconstruction from Red-Green-Blue (RGB) Images for Chlorophyll Content Detection.
    Gong L; Zhu C; Luo Y; Fu X
    Appl Spectrosc; 2023 Feb; 77(2):200-209. PubMed ID: 36323648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral Image Data and Waveband Indexing Methods to Estimate Nutrient Concentration on Lettuce (
    Eshkabilov S; Stenger J; Knutson EN; Küçüktopcu E; Simsek H; Lee CW
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery.
    Niu C; Tan K; Jia X; Wang X
    Environ Pollut; 2021 Oct; 286():117534. PubMed ID: 34119861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral estimation of chlorophyll content in jujube leaves: integration of derivative processing techniques and dimensionality reduction algorithms.
    Tuerxun N; Zheng J; Wang R; Wang L; Liu L
    Front Plant Sci; 2023; 14():1260772. PubMed ID: 38034562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves.
    Xiao Q; Tang W; Zhang C; Zhou L; Feng L; Shen J; Yan T; Gao P; He Y; Wu N
    Plant Phenomics; 2022; 2022():9813841. PubMed ID: 36158530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation Method of Soluble Solid Content in Peach Based on Deep Features of Hyperspectral Imagery.
    Yang B; Gao Y; Yan Q; Qi L; Zhu Y; Wang B
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UAV hyperspectral combined with LiDAR to estimate chlorophyll content at the stand and individual tree scales.
    Yang T; Yu Y; Yang XG; DU HX
    Ying Yong Sheng Tai Xue Bao; 2023 Aug; 34(8):2101-2112. PubMed ID: 37681374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Determination of Wine Grape Maturity Level from pH, Titratable Acidity, and Sugar Content Using Non-Destructive In Situ Infrared Spectroscopy and Multi-Head Attention Convolutional Neural Networks.
    Kalopesa E; Gkrimpizis T; Samarinas N; Tsakiridis NL; Zalidis GC
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquaphotomics Monitoring of Lettuce Freshness during Cold Storage.
    Vitalis F; Muncan J; Anantawittayanon S; Kovacs Z; Tsenkova R
    Foods; 2023 Jan; 12(2):. PubMed ID: 36673350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging.
    Yang Y; Nan R; Mi T; Song Y; Shi F; Liu X; Wang Y; Sun F; Xi Y; Zhang C
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images.
    Tao H; Feng H; Xu L; Miao M; Yang G; Yang X; Fan L
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32102358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.