These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38310628)

  • 21. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction.
    Jiao CN; Zhou F; Liu BM; Zheng CH; Liu JX; Gao YL
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):1110-1121. PubMed ID: 38055359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding.
    Qu X; Du G; Hu J; Cai Y
    Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph.
    Chu Y; Wang X; Dai Q; Wang Y; Wang Q; Peng S; Wei X; Qiu J; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34009265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PmDNE: Prediction of miRNA-Disease Association Based on Network Embedding and Network Similarity Analysis.
    Li J; Liu Y; Zhang Z; Liu B; Wang Y
    Biomed Res Int; 2020; 2020():6248686. PubMed ID: 33354569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous graph neural network for lncRNA-disease association prediction.
    Shi H; Zhang X; Tang L; Liu L
    Sci Rep; 2022 Oct; 12(1):17519. PubMed ID: 36266433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NEMPD: a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information.
    Ji BY; You ZH; Chen ZH; Wong L; Yi HC
    BMC Bioinformatics; 2020 Sep; 21(1):401. PubMed ID: 32912137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning multi-scale heterogenous network topologies and various pairwise attributes for drug-disease association prediction.
    Zhang H; Cui H; Zhang T; Cao Y; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMCMDA: neural multicategory MiRNA-disease association prediction.
    Wang J; Li J; Yue K; Wang L; Ma Y; Li Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33778850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-channel graph attention autoencoders for disease-related lncRNAs prediction.
    Sheng N; Huang L; Wang Y; Zhao J; Xuan P; Gao L; Cao Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction.
    Xuan P; Wang X; Cui H; Meng X; Nakaguchi T; Zhang T
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4306-4316. PubMed ID: 38709611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network.
    Pang S; Zhuang Y; Wang X; Wang F; Qiao S
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):319. PubMed ID: 34789236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-neighbourhood information aggregation and feature fusion for prediction of miRNA-disease association.
    Liu W; Lan Z; Li Z; Sun X; Lu X
    Comput Biol Med; 2024 Oct; 181():109068. PubMed ID: 39208505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion.
    Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S
    Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive deep propagation graph neural network for predicting miRNA-disease associations.
    Hu H; Zhao H; Zhong T; Dong X; Wang L; Han P; Li Z
    Brief Funct Genomics; 2023 Nov; 22(5):453-462. PubMed ID: 37078739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction.
    Xuan P; Zhang X; Zhang Y; Hu K; Nakaguchi T; Zhang T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PGCNMDA: Learning node representations along paths with graph convolutional network for predicting miRNA-disease associations.
    Chu S; Duan G; Yan C
    Methods; 2024 Sep; 229():71-81. PubMed ID: 38909974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graph Representation Learning Based on Specific Subgraphs for Biomedical Interaction Prediction.
    Pang H; Wei S; Du Z; Zhao Y; Cai S; Zhao Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1552-1564. PubMed ID: 38767994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneous multi-scale neighbor topologies enhanced drug-disease association prediction.
    Xuan P; Meng X; Gao L; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35393616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model.
    Ji BY; You ZH; Cheng L; Zhou JR; Alghazzawi D; Li LP
    Sci Rep; 2020 Apr; 10(1):6658. PubMed ID: 32313121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.