These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38310768)

  • 1. Evaluation of generic EMG-Torque models across two Upper-Limb joints.
    Wang H; Bardizbanian B; Zhu Z; Wang H; Dai C; Clancy EA
    J Electromyogr Kinesiol; 2024 Apr; 75():102864. PubMed ID: 38310768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the electromyogram to anticipate torques about the elbow.
    Koirala K; Dasog M; Liu P; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):396-402. PubMed ID: 25014956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Management for Transfer Learning Approaches to Elbow EMG-Torque Modeling.
    Jiang X; Bardizbanian B; Dai C; Chen W; Clancy E
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2592-2601. PubMed ID: 33788675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using recurrent artificial neural network model to estimate voluntary elbow torque in dynamic situations.
    Song R; Tong KY
    Med Biol Eng Comput; 2005 Jul; 43(4):473-80. PubMed ID: 16255429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two degrees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes.
    Clancy EA; Martinez-Luna C; Wartenberg M; Dai C; Farrell TR
    J Electromyogr Kinesiol; 2017 Jun; 34():24-36. PubMed ID: 28384495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of synergic relations during isometric contractions of human elbow muscles.
    Buchanan TS; Almdale DP; Lewis JL; Rymer WZ
    J Neurophysiol; 1986 Nov; 56(5):1225-41. PubMed ID: 3794767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke.
    Li L; Tong KY; Hu XL; Hung LK; Koo TK
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):101-9. PubMed ID: 19012998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.
    Liu P; Liu L; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1039-46. PubMed ID: 25706722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplified Optimal Estimation of Time-Varying Electromyogram Standard Deviation (EMGσ).
    Rajotte KJ; Wang H; Wang H; Dai C; Zhu Z; Huang X; Clancy EA
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3122-3125. PubMed ID: 33018666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle activity-torque-velocity relations in human elbow extensor muscles.
    Uchiyama T; Akazawa K
    Front Med Biol Eng; 1999; 9(4):305-13. PubMed ID: 10718668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dynamic EMG-torque model of elbow based on neural networks.
    Liang Peng ; Zeng-Guang Hou ; Weiqun Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2852-5. PubMed ID: 26736886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyographic and biomechanical characteristics of segmental postural adjustments associated with voluntary wrist movements. Influence of an elbow support.
    Chabran E; Maton B; Ribreau C; Fourment A
    Exp Brain Res; 2001 Nov; 141(2):133-45. PubMed ID: 11713625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hand and distal joint tremor are most coherent with the activity of elbow flexors and wrist extensors in persons with essential tremor.
    Free DB; Syndergaard I; Pigg AC; Muceli S; Hallett M; Farina D; Charles SK
    J Appl Physiol (1985); 2024 Feb; 136(2):337-348. PubMed ID: 38126087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two degrees of freedom, dynamic, hand-wrist EMG-force using a minimum number of electrodes.
    Dai C; Zhu Z; Martinez-Luna C; Hunt TR; Farrell TR; Clancy EA
    J Electromyogr Kinesiol; 2019 Aug; 47():10-18. PubMed ID: 31009829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper-limb surface electro-myography at maximum supination and pronation torques: the effect of elbow and forearm angle.
    O'Sullivan LW; Gallwey TJ
    J Electromyogr Kinesiol; 2002 Aug; 12(4):275-85. PubMed ID: 12121684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of joint angle on EMG-torque model during constant-posture, quasi-constant-torque contractions.
    Liu P; Liu L; Martel F; Rancourt D; Clancy EA
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1020-8. PubMed ID: 23932797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Commonalities and differences in control of various drawing movements.
    Dounskaia N; Ketcham CJ; Stelmach GE
    Exp Brain Res; 2002 Sep; 146(1):11-25. PubMed ID: 12192573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinating two degrees of freedom during human arm movement: load and speed invariance of relative joint torques.
    Gottlieb GL; Song Q; Hong DA; Corcos DM
    J Neurophysiol; 1996 Nov; 76(5):3196-206. PubMed ID: 8930266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.