These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 38310941)

  • 1. Climate change and its effects on body size and shape: the role of endocrine mechanisms.
    Names GR; Grindstaff JL; Westneat DF; Heidinger BJ
    Philos Trans R Soc Lond B Biol Sci; 2024 Mar; 379(1898):20220509. PubMed ID: 38310941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endocrine flexibility can facilitate or constrain the ability to cope with global change.
    Taff CC; Baldan D; Mentesana L; Ouyang JQ; Vitousek MN; Hau M
    Philos Trans R Soc Lond B Biol Sci; 2024 Mar; 379(1898):20220502. PubMed ID: 38310929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change.
    Norin T; Metcalfe NB
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180180. PubMed ID: 30966964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish reproduction in a warming world: vulnerable points in hormone regulation from sex determination to spawning.
    Lema SC; Luckenbach JA; Yamamoto Y; Housh MJ
    Philos Trans R Soc Lond B Biol Sci; 2024 Mar; 379(1898):20220516. PubMed ID: 38310938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution in response to climate change: in pursuit of the missing evidence.
    Merilä J
    Bioessays; 2012 Sep; 34(9):811-8. PubMed ID: 22782862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world.
    González-Tokman D; Córdoba-Aguilar A; Dáttilo W; Lira-Noriega A; Sánchez-Guillén RA; Villalobos F
    Biol Rev Camb Philos Soc; 2020 Jun; 95(3):802-821. PubMed ID: 32035015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate.
    Reed TE; Schindler DE; Waples RS
    Conserv Biol; 2011 Feb; 25(1):56-63. PubMed ID: 20646016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do phenology, plasticity, and evolution determine the fitness consequences of climate change for montane butterflies?
    Kingsolver JG; Buckley LB
    Evol Appl; 2018 Sep; 11(8):1231-1244. PubMed ID: 30151036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endocrine responses to environmental variation.
    Little AG; Seebacher F
    Philos Trans R Soc Lond B Biol Sci; 2024 Mar; 379(1898):20220515. PubMed ID: 38310937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium.
    Williams CM; Ragland GJ; Betini G; Buckley LB; Cheviron ZA; Donohue K; Hereford J; Humphries MM; Lisovski S; Marshall KE; Schmidt PS; Sheldon KS; Varpe Ø; Visser ME
    Integr Comp Biol; 2017 Nov; 57(5):921-933. PubMed ID: 29045649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change.
    Fox RJ; Donelson JM; Schunter C; Ravasi T; Gaitán-Espitia JD
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180174. PubMed ID: 30966962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endocrinology of thermoregulation in birds in a changing climate.
    Ruuskanen S; Hsu BY; Nord A
    Mol Cell Endocrinol; 2021 Jan; 519():111088. PubMed ID: 33227349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes.
    Kelly M
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180176. PubMed ID: 30966963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of plasticity and adaptive responses to climate change along climate gradients.
    Kingsolver JG; Buckley LB
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28814652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate warming is associated with smaller body size and shorter lifespans in moose near their southern range limit.
    Hoy SR; Peterson RO; Vucetich JA
    Glob Chang Biol; 2018 Jun; 24(6):2488-2497. PubMed ID: 29226555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting evolutionary responses to climate change in the sea.
    Munday PL; Warner RR; Monro K; Pandolfi JM; Marshall DJ
    Ecol Lett; 2013 Dec; 16(12):1488-500. PubMed ID: 24119205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Australian songbird body size tracks climate variation: 82 species over 50 years.
    Gardner JL; Amano T; Peters A; Sutherland WJ; Mackey B; Joseph L; Stein J; Ikin K; Little R; Smith J; Symonds MRE
    Proc Biol Sci; 2019 Dec; 286(1916):20192258. PubMed ID: 31771472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conceptual framework for understanding stress-induced physiological and transgenerational effects on population responses to climate change.
    Crino OL; Bonduriansky R; Martin LB; Noble DWA
    Evol Lett; 2024 Feb; 8(1):161-171. PubMed ID: 38370553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastic and evolutionary responses to climate change in fish.
    Crozier LG; Hutchings JA
    Evol Appl; 2014 Jan; 7(1):68-87. PubMed ID: 24454549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.