These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 38311259)
1. BRG1 accelerates mesothelial cell senescence and peritoneal fibrosis by inhibiting mitophagy through repression of OXR1. Li S; Zhuang Y; Ji Y; Chen X; He L; Chen S; Luo Y; Shen L; Xiao J; Wang H; Luo C; Peng F; Long H Free Radic Biol Med; 2024 Mar; 214():54-68. PubMed ID: 38311259 [TBL] [Abstract][Full Text] [Related]
2. Brahma-related gene 1 acts as a profibrotic mediator and targeting it by micheliolide ameliorates peritoneal fibrosis. Li S; Luo C; Chen S; Zhuang Y; Ji Y; Zeng Y; Zeng Y; He X; Xiao J; Wang H; Chen X; Long H; Peng F J Transl Med; 2023 Sep; 21(1):639. PubMed ID: 37726857 [TBL] [Abstract][Full Text] [Related]
3. Empagliflozin attenuates epithelial-to-mesenchymal transition through senescence in peritoneal dialysis. Lho Y; Park Y; Do JY; Kim AY; Park YE; Kang SH Am J Physiol Renal Physiol; 2024 Sep; 327(3):F363-F372. PubMed ID: 38961839 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor. Li X; Liu H; Sun L; Zhou X; Yuan X; Chen Y; Liu F; Liu Y; Xiao L J Cell Mol Med; 2019 Apr; 23(4):2372-2383. PubMed ID: 30693641 [TBL] [Abstract][Full Text] [Related]
6. MiR-454-3p regulates high glucose-induced mesothelial-mesenchymal transition and glycolysis in peritoneal mesothelial cells by targeting STAT3. Li N; Fu J; Wang Q; Rao Q; Yao L; Shao X; Zhang P Ren Fail; 2024 Dec; 46(2):2394635. PubMed ID: 39192609 [TBL] [Abstract][Full Text] [Related]
7. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis. Gong W; Luo C; Peng F; Xiao J; Zeng Y; Yin B; Chen X; Li S; He X; Liu Y; Cao H; Xu J; Long H Clin Sci (Lond); 2021 Aug; 135(15):1873-1895. PubMed ID: 34318888 [TBL] [Abstract][Full Text] [Related]
8. Gremlin promotes peritoneal membrane injury in an experimental mouse model and is associated with increased solute transport in peritoneal dialysis patients. Siddique I; Curran SP; Ghayur A; Liu L; Shi W; Hoff CM; Gangji AS; Brimble KS; Margetts PJ Am J Pathol; 2014 Nov; 184(11):2976-84. PubMed ID: 25194662 [TBL] [Abstract][Full Text] [Related]
9. WNT signaling is required for peritoneal membrane angiogenesis. Padwal M; Cheng G; Liu L; Boivin F; Gangji AS; Brimble KS; Bridgewater D; Margetts PJ Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1036-F1045. PubMed ID: 29363326 [TBL] [Abstract][Full Text] [Related]
11. MiR-200a negatively regulates TGF-β Guo R; Hao G; Bao Y; Xiao J; Zhan X; Shi X; Luo L; Zhou J; Chen Q; Wei X Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1087-F1095. PubMed ID: 29357421 [TBL] [Abstract][Full Text] [Related]
12. A pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis. Busnadiego O; Loureiro-Álvarez J; Sandoval P; Lagares D; Dotor J; Pérez-Lozano ML; López-Armada MJ; Lamas S; López-Cabrera M; Rodríguez-Pascual F J Am Soc Nephrol; 2015 Jan; 26(1):173-82. PubMed ID: 25012164 [TBL] [Abstract][Full Text] [Related]
13. Autophagy promotes fibrosis and apoptosis in the peritoneum during long-term peritoneal dialysis. Wu J; Xing C; Zhang L; Mao H; Chen X; Liang M; Wang F; Ren H; Cui H; Jiang A; Wang Z; Zou M; Ji Y J Cell Mol Med; 2018 Feb; 22(2):1190-1201. PubMed ID: 29077259 [TBL] [Abstract][Full Text] [Related]
14. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. Yang X; Bao M; Fang Y; Yu X; Ji J; Ding X J Transl Med; 2021 Jun; 19(1):283. PubMed ID: 34193173 [TBL] [Abstract][Full Text] [Related]
15. TGF-β1-VEGF-A pathway induces neoangiogenesis with peritoneal fibrosis in patients undergoing peritoneal dialysis. Kariya T; Nishimura H; Mizuno M; Suzuki Y; Matsukawa Y; Sakata F; Maruyama S; Takei Y; Ito Y Am J Physiol Renal Physiol; 2018 Feb; 314(2):F167-F180. PubMed ID: 28978530 [TBL] [Abstract][Full Text] [Related]
16. CX3CL1-CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis. Helmke A; Nordlohne J; Balzer MS; Dong L; Rong S; Hiss M; Shushakova N; Haller H; von Vietinghoff S Kidney Int; 2019 Jun; 95(6):1405-1417. PubMed ID: 30948201 [TBL] [Abstract][Full Text] [Related]
17. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis. Fan YP; Hsia CC; Tseng KW; Liao CK; Fu TW; Ko TL; Chiu MM; Shih YH; Huang PY; Chiang YC; Yang CC; Fu YS Stem Cells Transl Med; 2016 Feb; 5(2):235-47. PubMed ID: 26718649 [TBL] [Abstract][Full Text] [Related]
18. Restoration of CPT1A-mediated fatty acid oxidation in mesothelial cells protects against peritoneal fibrosis. Su W; Hu Z; Zhong X; Cong A; Zhang Y; Zhou Z; Li J; Su C; Huang Y; Cao W Theranostics; 2023; 13(13):4482-4496. PubMed ID: 37649600 [No Abstract] [Full Text] [Related]
19. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis. Shi Y; Tao M; Wang Y; Zang X; Ma X; Qiu A; Zhuang S; Liu N J Pathol; 2020 Jan; 250(1):79-94. PubMed ID: 31579944 [TBL] [Abstract][Full Text] [Related]
20. Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure. López-Cabrera M; Aguilera A; Aroeira LS; Ramírez-Huesca M; Pérez-Lozano ML; Jiménez-Heffernan JA; Bajo MA; del Peso G; Sánchez-Tomero JA; Selgas R Perit Dial Int; 2006; 26(1):26-34. PubMed ID: 16538870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]