These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38311668)
1. ENVINet5 deep learning change detection framework for the estimation of agriculture variations during 2012-2023 with Landsat series data. Singh G; Dahiya N; Sood V; Singh S; Sharma A Environ Monit Assess; 2024 Feb; 196(3):233. PubMed ID: 38311668 [TBL] [Abstract][Full Text] [Related]
2. Evaluating the accuracy of satellite-based methods to estimate residential proximity to agricultural crops. Hyland C; McConnell K; DeYoung E; Curl CL J Expo Sci Environ Epidemiol; 2024 Mar; 34(2):294-307. PubMed ID: 36002734 [TBL] [Abstract][Full Text] [Related]
3. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sun C; Bian Y; Zhou T; Pan J Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130689 [TBL] [Abstract][Full Text] [Related]
4. Land cover mapping using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017. Makinde EO; Oyelade EO Environ Sci Pollut Res Int; 2020 Jan; 27(1):66-74. PubMed ID: 31201700 [TBL] [Abstract][Full Text] [Related]
5. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites. Maynard JJ; Karl JW PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731 [TBL] [Abstract][Full Text] [Related]
6. Improving on mapping long-term surface water with a novel framework based on the Landsat imagery series. Lan L; Wang YG; Chen HS; Gao XR; Wang XK; Yan XF J Environ Manage; 2024 Feb; 353():120202. PubMed ID: 38308984 [TBL] [Abstract][Full Text] [Related]
7. Monitoring spatio-temporal dynamics of urban and peri-urban land transitions using ensemble of remote sensing spectral indices-a case study of Chennai Metropolitan Area, India. M M; M K Environ Monit Assess; 2019 Dec; 192(1):15. PubMed ID: 31811511 [TBL] [Abstract][Full Text] [Related]
8. Object-based land-use/land-cover change detection using Landsat imagery: a case study of Ardabil, Namin, and Nir counties in northwest Iran. Aslami F; Ghorbani A Environ Monit Assess; 2018 Jun; 190(7):376. PubMed ID: 29862420 [TBL] [Abstract][Full Text] [Related]
9. Novel artificial intelligence assisted Landsat-8 imagery analysis for mango orchard detection and area mapping. Tanveer MU; Munir K; Raza A; Almutairi MS PLoS One; 2024; 19(6):e0304450. PubMed ID: 38875251 [TBL] [Abstract][Full Text] [Related]
10. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data]. Taddei R Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688 [TBL] [Abstract][Full Text] [Related]
11. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636 [TBL] [Abstract][Full Text] [Related]
12. Land cover mapping based on random forest classification of multitemporal spectral and thermal images. Eisavi V; Homayouni S; Yazdi AM; Alimohammadi A Environ Monit Assess; 2015 May; 187(5):291. PubMed ID: 25910718 [TBL] [Abstract][Full Text] [Related]
13. Post-classification comparison of land cover using multitemporal Landsat and ASTER imagery: the case of Kahramanmaraş, Turkey. Alphan H; Doygun H; Unlukaplan YI Environ Monit Assess; 2009 Apr; 151(1-4):327-36. PubMed ID: 18398690 [TBL] [Abstract][Full Text] [Related]
14. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau]. Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255 [TBL] [Abstract][Full Text] [Related]
15. Land use/land cover changes of Noyyal watershed in Coimbatore district, India, mapped using remote sensing techniques. Kinattinkara S; Arumugam T; Kuppusamy S; Krishnan M Environ Sci Pollut Res Int; 2022 Dec; 29(57):86349-86361. PubMed ID: 35119640 [TBL] [Abstract][Full Text] [Related]
16. Application and Comparison of the MODIS-Derived Enhanced Vegetation Index to VIIRS, Landsat 5 TM and Landsat 8 OLI Platforms: A Case Study in the Arid Colorado River Delta, Mexico. Jarchow CJ; Didan K; Barreto-Muñoz A; Nagler PL; Glenn EP Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29757265 [TBL] [Abstract][Full Text] [Related]
17. A Single Image Deep Learning Approach to Restoration of Corrupted Landsat-7 Satellite Images. Petrovskaia A; Jana R; Oseledets I Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501975 [TBL] [Abstract][Full Text] [Related]
18. Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series. Caughlin TT; Barber C; Asner GP; Glenn NF; Bohlman SA; Wilson CH Ecol Appl; 2021 Jan; 31(1):e02208. PubMed ID: 32627902 [TBL] [Abstract][Full Text] [Related]
19. Monitoring land cover changes in Isfahan Province, Iran using Landsat satellite data. Soffianian A; Madanian M Environ Monit Assess; 2015 Aug; 187(8):543. PubMed ID: 26228619 [TBL] [Abstract][Full Text] [Related]
20. Estimation of dissolved organic carbon from inland waters at a large scale using satellite data and machine learning methods. Harkort L; Duan Z Water Res; 2023 Feb; 229():119478. PubMed ID: 36527868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]