These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38311936)

  • 1. Stability of Cytoplasmic Membrane of
    Shobhna ; Dutta A; Kumari P; Kashyap HK
    Langmuir; 2024 Feb; 40(6):2893-2906. PubMed ID: 38311936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering Ethanol-Driven Swelling, Rupturing, Aggregation, and Fusion of Lipid Vesicles Using Coarse-Grained Molecular Dynamics Simulations.
    Shobhna ; Kashyap HK
    Langmuir; 2022 Mar; 38(8):2445-2459. PubMed ID: 35167280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity.
    Pluhackova K; Horner A
    BMC Biol; 2021 Jan; 19(1):4. PubMed ID: 33441107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures.
    Balatti GE; Martini MF; Pickholz M
    J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study.
    Catte A; Wilson MR; Walker M; Oganesyan VS
    Soft Matter; 2018 Apr; 14(15):2796-2807. PubMed ID: 29595197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane models of E. coli containing cyclic moieties in the aliphatic lipid chain.
    Pandit KR; Klauda JB
    Biochim Biophys Acta; 2012 May; 1818(5):1205-10. PubMed ID: 22274566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Interactions between Curcumin and Different Types of Lipid Bilayers by Molecular Dynamics Simulation.
    Lyu Y; Xiang N; Mondal J; Zhu X; Narsimhan G
    J Phys Chem B; 2018 Mar; 122(8):2341-2354. PubMed ID: 29394060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane.
    Murzyn K; Róg T; Pasenkiewicz-Gierula M
    Biophys J; 2005 Feb; 88(2):1091-103. PubMed ID: 15556990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the envelope protein in the stability of a coronavirus model membrane against an ethanolic disinfectant.
    Das S; Meinel MK; Wu Z; Müller-Plathe F
    J Chem Phys; 2021 Jun; 154(24):245101. PubMed ID: 34241335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants.
    Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK
    Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pSPICA: A Coarse-Grained Force Field for Lipid Membranes Based on a Polar Water Model.
    Miyazaki Y; Okazaki S; Shinoda W
    J Chem Theory Comput; 2020 Jan; 16(1):782-793. PubMed ID: 31751511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of amphiphilic molecules on the structure and stability of homogeneous sphingomyelin bilayer: Insights from atomistic simulations.
    Kumari P; Kaur S; Sharma S; Kashyap HK
    J Chem Phys; 2018 Apr; 148(16):165102. PubMed ID: 29716234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Massive formation of intracellular membrane vesicles in Escherichia coli by a monotopic membrane-bound lipid glycosyltransferase.
    Eriksson HM; Wessman P; Ge C; Edwards K; Wieslander A
    J Biol Chem; 2009 Dec; 284(49):33904-14. PubMed ID: 19767390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the antibacterial action of cyclic peptides: insights from coarse-grained MD simulations.
    Khalfa A; Tarek M
    J Phys Chem B; 2010 Mar; 114(8):2676-84. PubMed ID: 20143883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-Grained Molecular Dynamics Simulations of Membrane-Trehalose Interactions.
    Kapla J; Stevensson B; Maliniak A
    J Phys Chem B; 2016 Sep; 120(36):9621-31. PubMed ID: 27530142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Ethanolic Disinfectants Disintegrate Coronavirus Model Membranes: A Dissipative Particle Dynamics Simulation Study.
    Zhou T; Wu Z; Das S; Eslami H; Müller-Plathe F
    J Chem Theory Comput; 2022 Apr; 18(4):2597-2615. PubMed ID: 35286098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulations Predict the Pathways via Which Pristine Fullerenes Penetrate Bacterial Membranes.
    Hsu PC; Jefferies D; Khalid S
    J Phys Chem B; 2016 Nov; 120(43):11170-11179. PubMed ID: 27712070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.