These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38311954)

  • 41. Respirable dust exposures in U.S. surface coal mines (1982-1986).
    Piacitelli GM; Amandus HE; Dieffenbach A
    Arch Environ Health; 1990; 45(4):202-9. PubMed ID: 2169228
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Annual dust pollution characteristics and its prevention and control for environmental protection in surface mines.
    Wang Z; Zhou W; Jiskani IM; Luo H; Ao Z; Mvula EM
    Sci Total Environ; 2022 Jun; 825():153949. PubMed ID: 35189235
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Study on the water-richness law and zoning assessment of mine water-bearing aquifers based on sedimentary characteristics.
    Wang Y; Pu Z; Ge Q; Liu J
    Sci Rep; 2022 Aug; 12(1):14107. PubMed ID: 35982098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluating hearing loss risks in the mining industry through MSHA citations.
    Sun K; Azman AS
    J Occup Environ Hyg; 2018 Mar; 15(3):246-262. PubMed ID: 29200378
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of the 2.0 mg/m3 coal mine dust standard on underground environmental dust levels.
    Parobeck
    Am Ind Hyg Assoc J; 1975 Aug; 36(8):604-9. PubMed ID: 1227286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of occupational exposure to diesel particulate matter through evaluation of 1-nitropyrene and 1-aminopyrene in surface coal miners, India.
    Wadikar DL; Farooqui MO; Middey A; Bafana A; Pakade Y; Naoghare P; Vanisree AJ; Kannan K; Sivanesan S
    Environ Monit Assess; 2021 May; 193(6):342. PubMed ID: 34002328
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multi-hazard risk characterization and collaborative control oriented to space in non-coal underground mines.
    Wu M; Hu N; Ye Y; Wang Q; Wang X
    Sci Rep; 2022 Sep; 12(1):16452. PubMed ID: 36180464
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dust exposures at U.S. surface coal mines in 1982-1983.
    Amandus HE; Piacitelli G
    Arch Environ Health; 1987; 42(6):374-81. PubMed ID: 3439816
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization via response surface methodology of the synthesis of a dust suppressant and its performance characterization for use in open cut coal mines.
    Jin H; Zhang Y; Wu G; Yang J; Li N
    J Environ Sci (China); 2022 Nov; 121():211-223. PubMed ID: 35654511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Respirable dust levels - surface work areas of underground coal mines and surface coal mines.
    Parobeck PS; Tomb TF
    Work Environ Health; 1974; 11(1):43-8. PubMed ID: 4456886
    [No Abstract]   [Full Text] [Related]  

  • 51. Evaluation of mining capacity of mines using the combination weighting approach: A case study in Shenmu Mining Area in Shaanxi Province, China.
    Chen H; Cheng Z; Kong D
    Sci Prog; 2021 Oct; 104(4):368504211044032. PubMed ID: 34605331
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [The struggle against dust in the Belgian coal mines. Situation at the beginning of 1976].
    Preat B; Vanstraelen M
    Rev Inst Hyg Mines (Hasselt); 1976; 31(4):204-19. PubMed ID: 1029062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Submicrometer elemental carbon as a selective measure of diesel particulate matter in coal mines.
    Birch ME; Noll JD
    J Environ Monit; 2004 Oct; 6(10):799-806. PubMed ID: 15480493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Dose-response relationship analysis between cumulative coal dust exposure and pneumoconiosis risk].
    Zhang G; Wang XT
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2020 Jun; 38(6):433-437. PubMed ID: 32629573
    [No Abstract]   [Full Text] [Related]  

  • 55. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler.
    Page SJ; Volkwein JC; Vinson RP; Joy GJ; Mischler SE; Tuchman DP; McWilliams LJ
    J Environ Monit; 2008 Jan; 10(1):96-101. PubMed ID: 18175022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania.
    Mamuya SH; BrÄtveit M; Mwaiselage J; Mashalla YJ; Moen BE
    Ann Occup Hyg; 2006 Mar; 50(2):197-204. PubMed ID: 16143714
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Suspension characteristics of the coal-quartz dust mixture in the working environment during the fully mechanized mining process.
    Geng F; An J; Wang Y; Gui C; Guo H; Wen T
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102244-102259. PubMed ID: 37665436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The evaluation of risk factors for occupational diseases of miners in coal mines].
    Surzhikov VD; Oleshchenko AM; Bol'shakov VV; Panaiotti EA
    Med Tr Prom Ekol; 2001; (7):26-9. PubMed ID: 11530515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational risk modeling of underground coal mines based on NIOSH employment demographics.
    Beeche CA; Garcia MA; Leng S; Roghanchi P; Pu J
    Saf Sci; 2023 Aug; 164():. PubMed ID: 37206436
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Investigation and analysis of occupational hazard factors in different industries in Tongliao City].
    Wang Q; Liu LP; Zhu K; Wang ZH; Zhang M; Bu N
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2023 Sep; 41(9):659-663. PubMed ID: 37805424
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.