These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 3831211)

  • 1. Epidermal development in Xenopus laevis: the definition of a monoclonal antibody to an epidermal marker.
    Jones EA
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():155-66. PubMed ID: 3831211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expression of epidermal antigens in Xenopus laevis.
    Itoh K; Yamashita A; Kubota HY
    Development; 1988 Sep; 104(1):1-14. PubMed ID: 3075541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lens-forming competence in the epidermis of Xenopus laevis during development.
    Arresta E; Bernardini S; Gargioli C; Filoni S; Cannata SM
    J Exp Zool A Comp Exp Biol; 2005 Jan; 303(1):1-12. PubMed ID: 15612005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of an epidermal antigen used to study tissue induction in the early Xenopus laevis embryo.
    Akers RM; Phillips CR; Wessells NK
    Science; 1986 Feb; 231(4738):613-6. PubMed ID: 3945801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A monoclonal antibody against neural crest-stage Xenopus laevis lectin perturbs craniofacial development of Xenopus.
    Evanson JE; Milos NC
    J Craniofac Genet Dev Biol; 1996; 16(2):74-93. PubMed ID: 8773899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [An immunohistochemical study of early embryogenesis in the clawed toad Xenopus laevis by using monoclonal antibodies to intermediate filament proteins].
    Zaraĭskiĭ AG; Zatevakhina GV
    Ontogenez; 1990; 21(3):267-73. PubMed ID: 2204015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A monoclonal antibody specific for an epidermal cell antigen of Xenopus laevis: electron microscopic observations using a gold-labeling method.
    Asada-Kubota M
    J Histochem Cytochem; 1988 May; 36(5):515-21. PubMed ID: 3356895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xenopus laevis embryo development: arrest of epidermal cell differentiation by the chelating agent 1,10-phenanthroline.
    Montorzi M; Burgos MH; Falchuk KH
    Mol Reprod Dev; 2000 Jan; 55(1):75-82. PubMed ID: 10602276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies.
    Dale L; Smith JC; Slack JM
    J Embryol Exp Morphol; 1985 Oct; 89():289-312. PubMed ID: 3912458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface contraction and expansion waves correlated with differentiation in axolotl embryos. II. In contrast to urodeles, the anuran Xenopus laevis does not show furrowing surface contraction waves.
    Nieuwkoop PD; Björklund NK; Gordon R
    Int J Dev Biol; 1996 Aug; 40(4):661-4. PubMed ID: 8877438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: two pathways for recognition by adult splenic T cells.
    Izutsu Y; Tochinai S; Iwabuchi K; Onoè K
    Dev Biol; 2000 May; 221(2):365-74. PubMed ID: 10790332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism and evolutional significance of epithelial-mesenchymal interactions in the body- and tail-dependent metamorphic transformation of anuran larval skin.
    Yoshizato K
    Int Rev Cytol; 2007; 260():213-60. PubMed ID: 17482907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peanut lectin receptors in the early amphibian embryo: regional markers for the study of embryonic induction.
    Slack JM
    Cell; 1985 May; 41(1):237-47. PubMed ID: 3995583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metamorphosis-dependent transcriptional regulation of xak-c, a novel Xenopus type I keratin gene.
    Watanabe Y; Tanaka R; Kobayashi H; Utoh R; Suzuki K; Obara M; Yoshizato K
    Dev Dyn; 2002 Dec; 225(4):561-70. PubMed ID: 12454932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of vertical and planar signals during the early steps of neural induction.
    Grunz H; Schüren C; Richter K
    Int J Dev Biol; 1995 Jun; 39(3):539-43. PubMed ID: 7577445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis.
    Walter BE; Tian Y; Garlisch AK; Carinato ME; Elkins MB; Wolfe AD; Schaefer JJ; Perry KJ; Henry JJ
    Mol Vis; 2004 Mar; 10():186-98. PubMed ID: 15064684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA of AmVegT, the axolotl orthologue of the Xenopus meso-endodermal determinant, is not localized in the oocyte.
    Nath K; Elinson RP
    Gene Expr Patterns; 2007 Jan; 7(1-2):197-201. PubMed ID: 16920404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial domains within the early Xenopus laevis embryo revealed by in situ hybridization and monoclonal antibodies.
    Phillips CR; Akers R
    Acta Histochem Suppl; 1986; 32():21-7. PubMed ID: 3085157
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction.
    Henry JJ; Carinato ME; Schaefer JJ; Wolfe AD; Walter BE; Perry KJ; Elbl TN
    Dev Dyn; 2002 Jun; 224(2):168-85. PubMed ID: 12112470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erratic deposition of agrin during the formation of Xenopus neuromuscular junctions in culture.
    Anderson MJ; Shi ZQ; Grawel R; Zackson SL
    Dev Biol; 1995 Jul; 170(1):1-20. PubMed ID: 7601300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.